
1. Explain the OSI Architecture.

OSI SECURITY ARCHITECTURE
 Itu-t x.800 “security architecture for osi”
 Defines a systematic way of defining and providing security requirements
 For us it provides a useful, if abstract, overview of concepts we will study

Aspects of security
 Consider 3 aspects of information security:

 Security attack
 Security mechanism
 Security service

Security attack
 Any action that compromises the security of information owned by an

organization
 Information security is about how to prevent attacks, or failing that, to detect

attacks on information-based systems
 Often threat & attack used to mean same thing
 Have a wide range of attacks
 Can focus of generic types of attacks

 Passive
 Active

Active attacks

SECURITY SERVICE

 Enhance security of data processing systems and information
transfers of an organization

 Intended to counter security attacks
 Using one or more security mechanisms
 Often replicates functions normally associated with physical

documents
• Which, for example, have signatures, dates; need protection

from disclosure, tampering, or destruction; be notarized or
witnessed; be recorded or licensed

 X.800:
“a service provided by a protocol layer of communicating open systems, which
ensures adequate security of the systems or of data transfers”

 Rfc 2828:
“a processing or communication service provided by a system to give a specific kind
of protection to system resources”

 Authentication - assurance that the communicating entity is the one claimed
 Access control - prevention of the unauthorized use of a resource
 Data confidentiality –protection of data from unauthorized disclosure
 Data integrity - assurance that data received is as sent by an authorized

entity
 Non-repudiation - protection against denial by one of the parties in a

communication

MODEL FOR NETWORK SECURITY

MODEL FOR NETWORK SECURITY

 Using this model requires us to:
1. Design a suitable algorithm for the security transformation
2. Generate the secret information (keys) used by the algorithm
3. Develop methods to distribute and share the secret information
4. Specify a protocol enabling the principals to use the transformation

and secret information for a security service

SYMMETRIC ENCRYPTION
 Sender and recipient share a common key
 All classical encryption algorithms are private-key
 Was only type prior to invention of public-key in 1970’s
 And by far most widely used

SOME BASIC TERMINOLOGY
 Plaintext - original message
 Ciphertext - coded message
 Cipher - algorithm for transforming plaintext to ciphertext
 Key - info used in cipher known only to sender/receiver
 Encipher (encrypt) - converting plaintext to ciphertext
 Decipher (decrypt) - recovering ciphertext from plaintext
 Cryptography - study of encryption principles/methods
 Cryptanalysis (codebreaking) - study of principles/ methods of

deciphering ciphertext without knowing key
 Cryptology - field of both cryptography and cryptanalysis

Symmetric cipher model

Requirements
 Two requirements for secure use of symmetric encryption:

 A strong encryption algorithm
 A secret key known only to sender / receiver

 Mathematically have:
y = ek(x)
x = dk(y)

 Assume encryption algorithm is known
 Implies a secure channel to distribute key

CRYPTOGRAPHY
 Characterize cryptographic system by:

 Type of encryption operations used
• Substitution / transposition / product

 Number of keys used
• Single-key or private / two-key or public

 Way in which plaintext is processed
• Block / stream

CRYPTANALYSIS
 Objective to recover key not just message
 General approaches:

 Cryptanalytic attack
 Brute-force attack

CRYPTANALYTIC ATTACKS
 Ciphertext only

 Only know algorithm & ciphertext, is statistical, know or can identify
plaintext

 Known plaintext
 Know/suspect plaintext & ciphertext

 Chosen plaintext
 Select plaintext and obtain ciphertext

 Chosen ciphertext
 Select ciphertext and obtain plaintext

 Chosen text
 Select plaintext or ciphertext to en/decrypt

 Unconditional security
 No matter how much computer power or time is available, the cipher

cannot be broken since the ciphertext provides insufficient
information to uniquely determine the corresponding plaintext

 Computational security
 Given limited computing resources (eg time needed for calculations is

greater than age of universe), the cipher cannot be broken

BRUTE FORCE SEARCH
 Always possible to simply try every key
 Most basic attack, proportional to key size
 Assume either know / recognise plaintext

2. Explain Classical Encryption Techniques.

CLASSICAL SUBSTITUTION CIPHERS
 Where letters of plaintext are replaced by other letters or by numbers or

symbols
 Or if plaintext is viewed as a sequence of bits, then substitution involves

replacing plaintext bit patterns with ciphertext bit patterns

CAESAR CIPHER
 Earliest known substitution cipher
 By julius caesar
 First attested use in military affairs
 Replaces each letter by 3rd letter on
 Example:

Meet me after the toga party
Phhw ph diwhu wkh wrjd sduwb
 Can define transformation as:

A b c d e f g h i j k l m n o p q r s t u v w x y z
D e f g h i j k l m n o p q r s t u v w x y z a b c
 Mathematically give each letter a number

A b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 Then have caesar cipher as:

C = e(p) = (p + k) mod (26)

P = d(c) = (c – k) mod (26)

CRYPTANALYSIS OF CAESAR CIPHER
 Only have 26 possible ciphers

 A maps to a,b,..z
 Could simply try each in turn
 A brute force search
 Given ciphertext, just try all shifts of letters
 Do need to recognize when have plaintext
 Eg. Break ciphertext "gcua vq dtgcm"

MONOALPHABETIC CIPHER
 Rather than just shifting the alphabet
 Could shuffle (jumble) the letters arbitrarily
 Each plaintext letter maps to a different random ciphertext letter
 Hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz
Cipher: dkvqfibjwpescxhtmyauolrgzn

Plaintext: ifwewishtoreplaceletters
Ciphertext: wirfrwajuhyftsdvfsfuufya

LANGUAGE REDUNDANCY AND CRYPTANALYSIS
 Human languages are redundant
 Eg "th lrd s m shphrd shll nt wnt"
 Letters are not equally commonly used
 In english e is by far the most common letter

 Followed by t,r,n,i,o,a,s
 Other letters like z,j,k,q,x are fairly rare
 Have tables of single, double & triple letter frequencies for various languages

USE IN CRYPTANALYSIS
 Key concept - monoalphabetic substitution ciphers do not change relative

letter frequencies
 Discovered by arabian scientists in 9th century
 Calculate letter frequencies for ciphertext
 Compare counts/plots against known values
 If caesar cipher look for common peaks/troughs

 Peaks at: a-e-i triple, no pair, rst triple
 Troughs at: jk, x-z

 For monoalphabetic must identify each letter
 Tables of common double/triple letters help

PLAYFAIR CIPHER

 Not even the large number of keys in a monoalphabetic cipher provides
security

 One approach to improving security was to encrypt multiple letters
 The playfair cipher is an example
 Invented by charles wheatstone in 1854, but named after his friend baron

playfair

ENCRYPTING AND DECRYPTING
 Plaintext is encrypted two letters at a time

1. If a pair is a repeated letter, insert filler like 'x’
2. If both letters fall in the same row, replace each with letter to right

(wrapping back to start from end)
3. If both letters fall in the same column, replace each with the letter

below it (again wrapping to top from bottom)
4. Otherwise each letter is replaced by the letter in the same row and in

the column of the other letter of the pair

POLYALPHABETIC CIPHERS
 POLYALPHABETIC SUBSTITUTION CIPHERS
 Improve security using multiple cipher alphabets
 Make cryptanalysis harder with more alphabets to guess and flatter

frequency distribution
 Use a key to select which alphabet is used for each letter of the message
 Use each alphabet in turn
 Repeat from start after end of key is reached

VIGENÈRE CIPHER
 Simplest polyalphabetic substitution cipher
 Effectively multiple caesar ciphers
 Key is multiple letters long k = k1 k2 ... Kd
 Ith letter specifies ith alphabet to use
 Use each alphabet in turn
 Repeat from start after d letters in message
 Decryption simply works in reverse

EXAMPLE OF VIGENÈRE CIPHER
 Write the plaintext out
 Write the keyword repeated above it
 Use each key letter as a caesar cipher key
 Encrypt the corresponding plaintext letter
 Eg using keyword deceptive

Key: deceptivedeceptivedeceptive
Plaintext: wearediscoveredsaveyourself
Ciphertext:zicvtwqngrzgvtwavzhcqyglmgj

AUTOKEY CIPHER
 Ideally want a key as long as the message
 Vigenère proposed the autokey cipher
 With keyword is prefixed to message as key
 Knowing keyword can recover the first few letters
 Use these in turn on the rest of the message
 But still have frequency characteristics to attack
 Eg. Given key deceptive

Key: deceptivewearediscoveredsav
Plaintext: wearediscoveredsaveyourself
Ciphertext:zicvtwqngkzeiigasxstslvvwla

ONE-TIME PAD
 If a truly random key as long as the message is used, the cipher will be secure
 Called a one-time pad
 Is unbreakable since cipher text bears no statistical relationship to the

plaintext
 Since for any plaintext & any cipher text there exists a key mapping one to

other
 Can only use the key once though
 Problems in generation & safe distribution of key

TRANSPOSITION CIPHERS
 Now consider classical transposition or permutation ciphers
 These hide the message by rearranging the letter order
 Without altering the actual letters used
 Can recognise these since have the same frequency distribution as the

original text

RAIL FENCE CIPHER
 Write message letters out diagonally over a number of rows
 Then read off cipher row by row
 Eg. Write message out as:

M e m a t r h t g p r y
e t e f e t e o a a t
 Giving ciphertext

Mematrhtgpryetefeteoaat

ROW TRANSPOSITION CIPHERS
 A more complex transposition
 Write letters of message out in rows over a specified number of columns
 Then reorder the columns according to some key before reading off the rows

Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
 o s t p o n e

 d u n t i l t
 w o a m x y z
Ciphertext: ttnaaptmtsuoaodwcoixknlypetz

STEGANOGRAPHY
 An alternative to encryption
 Hides existence of message

 Using only a subset of letters/words in a longer message marked in
some way

 Using invisible ink
 Hiding in lsb in graphic image or sound file

 Has drawbacks
 High overhead to hide relatively few info bits

MODERN BLOCK CIPHERS
 Now look at modern block ciphers
 One of the most widely used types of cryptographic algorithms
 Provide secrecy /authentication services
 Focus on des (data encryption standard)
 To illustrate block cipher design principles

BLOCK VS STREAM CIPHERS
 Block ciphers process messages in blocks, each of which is then

en/decrypted
 Like a substitution on very big characters

 64-bits or more
 Stream ciphers process messages a bit or byte at a time when en/decrypting
 Many current ciphers are block ciphers
 Broader range of applications

3. Briefly explain design principles of block cipher

1.3 BLOCK CIPHER PRINCIPLES
 Most symmetric block ciphers are based on a feistel cipher structure
 Needed since must be able to decrypt ciphertext to recover messages

efficiently
 Block ciphers look like an extremely large substitution
 Would need table of 264 entries for a 64-bit block
 Instead create from smaller building blocks
 Using idea of a product cipher

CLAUDE SHANNON AND SUBSTITUTION-PERMUTATION CIPHERS
 Claude shannon introduced idea of substitution-permutation (s-p) networks

in 1949 paper
 Form basis of modern block ciphers

 S-p nets are based on the two primitive cryptographic operations seen
before:
 Substitution (s-box)
 Permutation (p-box)

 Provide confusion & diffusion of message & key

CONFUSION AND DIFFUSION
 Cipher needs to completely obscure statistical properties of original message
 A one-time pad does this
 More practically shannon suggested combining s & p elements to obtain:
 Diffusion – dissipate statistical structure of plaintext over bulk of ciphertext
 Confusion – makes relationship between ciphertext and key as complex as

possible

FEISTEL CIPHER STRUCTURE
 Horst feistel devised the feistel cipher

 Based on concept of invertible product cipher
 Partitions input block into two halves

 Process through multiple rounds which
 Perform a substitution on left data half
 Based on round function of right half & subkey
 Then have permutation swapping halves

 Implements shannon’s s-p net concept

FEISTEL CIPHER DESIGN ELEMENTS
 Block size
 Key size
 Number of rounds
 Subkey generation algorithm
 Round function
 Fast software en/decryption
 Ease of analysis

FEISTEL CIPHER DECRYPTION

4. Describe the working principle of DES with an example.

DATA ENCRYPTION STANDARD (DES)
 Most widely used block cipher in world
 Adopted in 1977 by nbs (now nist)

 As fips pub 46
 Encrypts 64-bit data using 56-bit key
 Has widespread use
 Has been considerable controversy over its security

DES DESIGN CONTROVERSY
 Although des standard is public
 Was considerable controversy over design

 In choice of 56-bit key (vs lucifer 128-bit)
 And because design criteria were classified

 Subsequent events and public analysis show in fact design was appropriate
 Use of des has flourished

 Especially in financial applications
 Still standardised for legacy application use

DES ENCRYPTION OVERVIEW

INITIAL PERMUTATION IP
 First step of the data computation
 Ip reorders the input data bits
 Even bits to lh half, odd bits to rh half
 Quite regular in structure (easy in h/w)
 Example:

ip(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
Des round structure
 Uses two 32-bit l & r halves
 As for any feistel cipher can describe as:

Li = ri–1
Ri = li–1 f(ri–1, ki)
 F takes 32-bit r half and 48-bit subkey:

 Expands r to 48-bits using perm e
 Adds to subkey using xor
 Passes through 8 s-boxes to get 32-bit result
 Finally permutes using 32-bit perm p

SUBSTITUTION BOXES S
 Have eight s-boxes which map 6 to 4 bits
 Each s-box is actually 4 little 4 bit boxes

 Outer bits 1 & 6 (row bits) select one row of 4
 Inner bits 2-5 (col bits) are substituted
 Result is 8 lots of 4 bits, or 32 bits

 Row selection depends on both data & key
 Feature known as autoclaving (autokeying)

 Example:
 S(18 09 12 3d 11 17 38 39) = 5fd25e03

DES KEY SCHEDULE
 Forms subkeys used in each round

 Initial permutation of the key (pc1) which selects 56-bits in two 28-bit
halves

 16 stages consisting of:
 Rotating each half separately either 1 or 2 places depending

on the key rotation schedule k
 Selecting 24-bits from each half & permuting them by pc2 for

use in round function f
 Note practical use issues in h/w vs s/w

DES DECRYPTION
 Decrypt must unwind steps of data computation
 With feistel design, do encryption steps again using subkeys in reverse order

(sk16 … sk1)
 Ip undoes final fp step of encryption
 1st round with sk16 undoes 16th encrypt round

 ….
 16th round with sk1 undoes 1st encrypt round
 Then final fp undoes initial encryption ip
 Thus recovering original data value

AVALANCHE EFFECT
 Key desirable property of encryption alg
 Where a change of one input or key bit results in changing approx half

output bits
 Making attempts to “home-in” by guessing keys impossible
 Des exhibits strong avalanche

STRENGTH OF DES – KEY SIZE
 56-bit keys have 256 = 7.2 x 1016 values
 Brute force search looks hard
 Recent advances have shown is possible

 In 1997 on internet in a few months
 In 1998 on dedicated h/w (eff) in a few days
 In 1999 above combined in 22hrs!

 Still must be able to recognize plaintext
 Must now consider alternatives to des

STRENGTH OF DES – ANALYTIC ATTACKS
 Now have several analytic attacks on des
 These utilise some deep structure of the cipher

 By gathering information about encryptions
 Can eventually recover some/all of the sub-key bits
 If necessary then exhaustively search for the rest

 Generally these are statistical attacks
 Include

 Differential cryptanalysis
 Linear cryptanalysis
 Related key attacks

STRENGTH OF DES – TIMING ATTACKS
 Attacks actual implementation of cipher
 Use knowledge of consequences of implementation to derive information

about some/all subkey bits
 Specifically use fact that calculations can take varying times depending on

the value of the inputs to it
 Particularly problematic on smartcards

DIFFERENTIAL CRYPTANALYSIS
 One of the most significant recent (public) advances in cryptanalysis
 Known by nsa in 70's cf des design
 Murphy, biham & shamir published in 90’s
 Powerful method to analyse block ciphers

 Used to analyse most current block ciphers with varying degrees of success
 Des reasonably resistant to it, cf lucifer

 Perform attack by repeatedly encrypting plaintext pairs with known input
xor until obtain desired output xor

 When found
 If intermediate rounds match required xor have a right pair
 If not then have a wrong pair, relative ratio is s/n for attack

 Can then deduce keys values for the rounds
 Right pairs suggest same key bits
 Wrong pairs give random values

 For large numbers of rounds, probability is so low that more pairs are
required than exist with 64-bit inputs

 Biham and shamir have shown how a 13-round iterated characteristic can
break the full 16-round des

LINEAR CRYPTANALYSIS
 Another recent development
 Also a statistical method
 Must be iterated over rounds, with decreasing probabilities
 Developed by matsui et al in early 90's
 Based on finding linear approximations

 Can attack des with 243 known plaintexts, easier but still in practise
infeasible

 Find linear approximations with prob p != ½
P[i1,i2,...,ia] c[j1,j2,...,jb] = k[k1,k2,...,kc]
Where ia,jb,kc are bit locations in p,c,k
 Gives linear equation for key bits
 Get one key bit using max likelihood alg
 Using a large number of trial encryptions
 Effectiveness given by: |p–1/2|

5. Explain in detail the transformations take place in AES encryption procedure

ADVANCED ENCRYPTION STANDARD
Origins

• Clear a replacement for des was needed
– Have theoretical attacks that can break it
– Have demonstrated exhaustive key search attacks

• Can use triple-des – but slow with small blocks
• Us nist issued call for ciphers in 1997.
• 15 candidates accepted in jun 98.
• 5 were short listed in aug-99.
• Rijndael was selected as the aes in oct-2000.
• Issued as fips pub 197 standard in nov-2001.

Aes Evaluation Criteria
• Initial criteria:

– Security – effort to practically cryptanalysis
– Cost – computational
– Algorithm & implementation characteristics

• Final criteria:
– General security
– Software & hardware implementation ease
– Implementation attacks
– Flexibility (in en/decrypt, keying, other factors)

The Aes Cipher - Rijndael
• Designed by rijmen-daemen in belgium
• Has 128/192/256 bit keys, 128 bit data
• An iterative rather than feistel cipher

– Treats data in 4 groups of 4 bytes
– Operates an entire block in every round

• Designed to be:
– Resistant against known attacks
– Speed and code compactness on many cpus
– Design simplicity

Rijndael
• Processes data as 4 groups of 4 bytes (state)
• Has 9/11/13 rounds in which state undergoes:

– Byte substitution (1 s-box used on every byte)
– Shift rows (permute bytes between groups/columns)
– Mix columns (subs using matrix multiply of groups)
– Add round key (xor state with key material)

• Initial xor key material & incomplete last round
• All operations can be combined into xor and table lookups - hence very fast &

efficient

Byte Substitution
• A simple substitution of each byte
• Uses one table of 16x16 bytes containing a permutation of all 256 8-bit

values
• Each byte of state is replaced by byte in row (left 4-bits) & column (right 4-

bits)
– Eg. Byte {95} is replaced by row 9 col 5 byte
– Which is the value {2a}

• S-box is constructed using a defined transformation of the values in gf(28)
• Designed to be resistant to all known attacks

Shift rows
• Circular byte shift in each

– 1st row is unchanged
– 2nd row does 1 byte circular shift to left
– 3rd row does 2 byte circular shift to left
– 4th row does 3 byte circular shift to left

• Decrypt does shifts to right

• Since state is processed by columns, this step permutes bytes between the
columns

mix
columns

• Each column is processed separately
• Each byte is replaced by a value dependent on all 4 bytes in the column
• Effectively a matrix multiplication in gf(28) using prime poly m(x)

=x8+x4+x3+x+1

Add round key
• Xor state with 128-bits of the round key
• Again processed by column (though effectively a series of byte operations)
• Inverse for decryption is identical since xor is own inverse, just with correct

round key
• Designed to be as simple as possible

Aes decryption
• Aes decryption is not identical to encryption since steps done in reverse
• But can define an equivalent inverse cipher with steps as for encryption

– But using inverses of each step
– With a different key schedule

• Works since result is unchanged when
– Swap byte substitution & shift rows
– Swap mix columns & add (tweaked) round key

Implementation aspects
• Can efficiently implement on 8-bit cpu

– Byte substitution works on bytes using a table of 256 entries
– Shift rows is simple byte shifting
– Add round key works on byte xors
– Mix columns requires matrix multiply in gf(28) which works on byte

values, can be simplified to use a table lookup
• Can efficiently implement on 32-bit cpu

– Redefine steps to use 32-bit words
– Can precompute 4 tables of 256-words
– Then each column in each round can be computed using 4 table

lookups + 4 xors
– At a cost of 16kb to store tables

• Designers believe this very efficient implementation was a key factor in its
selection as the aes cipher

TRIPLE DES
• Clear a replacement for des was needed

– Theoretical attacks that can break it
– Demonstrated exhaustive key search attacks

• Aes is a new cipher alternative
• Prior to this alternative was to use multiple encryption with des

implementations

• Triple-des is the chosen form
Triple-des with two-keys

• Hence must use 3 encryptions
– Would seem to need 3 distinct keys

• But can use 2 keys with e-d-e sequence
– C = ek1[dk2[ek1[p]]]
– Nb encrypt & decrypt equivalent in security
– If k1=k2 then can work with single des

• Standardized in ansi x9.17 & iso8732
• No current known practical attacks

Triple-des with three-keys
• Although are no practical attacks on two-key triple-des have some

indications
• Can use triple-des with three-keys to avoid even these

– C = ek3[dk2[ek1[p]]]
• Has been adopted by some internet applications, eg pgp, s/mime

Blowfish
• A symmetric block cipher designed by bruce schneier in 1993/94
• Characteristics

– Fast implementation on 32-bit cpus
– Compact in use of memory
– Simple structure eases analysis/implemention
– Variable security by varying key size

• Has been implemented in various products
• Uses a 32 to 448 bit key
• Used to generate

– 18 32-bit subkeys stored in k-array kj
– Four 8x32 s-boxes stored in si,j

• Key schedule consists of:
– Initialize p-array and then 4 s-boxes using pi
– Xor p-array with key bits (reuse as needed)
– Loop repeatedly encrypting data using current p & s and replace

successive pairs of p then s values
– Requires 521 encryptions, hence slow in rekeying

Blowfish encryption
• Uses two primitives: addition & xor
• Data is divided into two 32-bit halves l0 & r0

For i = 1 to 16 do
Ri = li-1 xor pi;
Li = f[ri] xor ri-1;
L17 = r16 xor p18;
R17 = l16 xor i17;

• Where
F[a,b,c,d] = ((s1,a + s2,b) xor s3,c) + s4,a

Rc5
• A proprietary cipher owned by rsadsi
• Designed by ronald rivest (of rsa fame)
• Used in various rsadsi products
• Can vary key size / data size / no rounds
• Very clean and simple design
• Easy implementation on various cpus
• Yet still regarded as secure
• Rc5 is a family of ciphers rc5-w/r/b

• W = word size in bits (16/32/64) nb data=2w
• R = number of rounds (0..255)
• B = number of bytes in key (0..255)

• Nominal version is rc5-32/12/16
• Ie 32-bit words so encrypts 64-bit data blocks
• Using 12 rounds
• With 16 bytes (128-bit) secret key

Rc5 encryption
• Split input into two halves a & b

L0 = a + s[0];
R0 = b + s[1];
For i = 1 to r do
Li = ((li-1 xor ri-1) <<< ri-1) + s[2 x i];
Ri = ((ri-1 xor li) <<< li) + s[2 x i + 1];

• Each round is like 2 des rounds
• Note rotation is main source of non-linearity
• Need reasonable number of rounds (eg 12-16)

Block cipher characteristics
• Features seen in modern block ciphers are:

– Variable key length / block size / no rounds
– Mixed operators, data/key dependent rotation
– Key dependent s-boxes
– More complex key scheduling
– Operation of full data in each round
– Varying non-linear functions

Stream ciphers
• Process the message bit by bit (as a stream)
• Typically have a (pseudo) random stream key
• Combined (xor) with plaintext bit by bit
• Randomness of stream key completely destroys any statistically properties

in the message
– Ci = mi xor streamkeyi

• What could be simpler!!!!

• But must never reuse stream key
– Otherwise can remove effect and recover messages

Rc4
• A proprietary cipher owned by rsa dsi
• Another ron rivest design, simple but effective
• Variable key size, byte-oriented stream cipher
• Widely used (web ssl/tls, wireless wep)
• Key forms random permutation of all 8-bit values
• Uses that permutation to scramble input info processed a byte at a time

Rc4 key schedule
• Starts with an array s of numbers: 0..255
• Use key to well and truly shuffle
• S forms internal state of the cipher
• Given a key k of length l bytes

For i = 0 to 255 do
S[i] = i
J = 0
For i = 0 to 255 do
J = (j + s[i] + k[i mod l]) (mod 256)
Swap (s[i], s[j])

Rc4 encryption
• Encryption continues shuffling array values
• Sum of shuffled pair selects "stream key" value
• Txor with next byte of message to en/decrypt

I = j = 0
For each message byte mi
I = (i + 1) (mod 256)
J = (j + s[i]) (mod 256)
Swap(s[i], s[j])
T = (s[i] + s[j]) (mod 256)
Ci = mi xor s[t]

Rc4 security
• Claimed secure against known attacks

– Have some analyses, none practical
• Result is very non-linear
• Since rc4 is a stream cipher, must never reuse a key
• Have a concern with wep, but due to key handling rather than rc4 itself

UNIT II

 BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY

1. Describe Euler’s and Fermat’s theorem.

Fermat's theorem
► Fermat's little theorem (not to be confused with fermat's last theorem)

states that if p is a prime number, then for any integer a, ap −	a will be evenly
divisible by p. This can be expressed in the notation of modular arithmetic as
follows:

► A variant of this theorem is stated in the following form: if p is a prime and a
is an integer coprime to p, then ap −	1	−	1	will	be	evenly	divisible by p. In the
notation of modular arithmetic:

► Ap-1 = 1 (mod p)
 Where p is prime and gcd(a,p)=1

► Also known as fermat’s little theorem
► Also ap = p (mod p)
► Useful in public key and primality testing

Euler totient function ø(n)
► When doing arithmetic modulo n
► Complete set of residues is: 0..n-1
►
► Reduced set of residues is those numbers (residues) which are relatively

prime to n
 Eg for n=10,
 Complete set of residues is {0,1,2,3,4,5,6,7,8,9}
 Reduced set of residues is {1,3,7,9}

► Number of elements in reduced set of residues is called the euler totient
function ø(n)

► To compute ø(n) need to count number of residues to be excluded
► In general need prime factorization, but

 For p (p prime) ø(p) = p-1
 For p.q (p,q prime) ø(pq) =(p-1)x(q-1)

► Eg.
Ø(37) = 36
Ø(21) = (3–1)x(7–1) = 2x6 = 12

Euler's theorem
► A generalisation of fermat's theorem
► Aø(n) = 1 (mod n)

 For any a,n where gcd(a,n)=1
► Eg.

A=3;n=10; ø(10)=4;

hence 34 = 81 = 1 mod 10
A=2;n=11; ø(11)=10;

hence 210 = 1024 = 1 mod 11

Miller rabin algorithm
► A test based on fermat’s theorem
► Algorithm is:

Test (n) is:
1. Find integers k, q, k > 0, q odd, so that (n–1)=2kq
2. Select a random integer a, 1<a<n–1
3. If aq mod n = 1 then return (“maybe prime");
4. For j = 0 to k – 1 do

5. If (a2jq mod n = n-1)
 then return(" maybe prime ")

6. Return ("composite")

Prime distribution
► Prime number theorem states that primes occur roughly every (ln n) integers
► But can immediately ignore evens
► So in practice need only test 0.5 ln(n) numbers of size n to locate a prime

 Note this is only the “average”
 Sometimes primes are close together
 Other times are quite far apart

Discrete logarithms
► The inverse problem to exponentiation is to find the discrete logarithm of a

number modulo p
► That is to find x such that y = gx (mod p)
► This is written as x = logg y (mod p)
► If g is a primitive root then it always exists, otherwise it may not, eg.

X = log3 4 mod 13 has no answer
X = log2 3 mod 13 = 4 by trying successive powers

► Whilst exponentiation is relatively easy, finding discrete logarithms is
generally a hard problem

2. Describe Public Key Cryptography.

Private key
• Traditional private/secret/single key cryptography uses one key
• Shared by both sender and receiver
• If this key is disclosed communications are compromised
• Also is symmetric, parties are equal
• Hence does not protect sender from receiver forging a message & claiming is

sent by sender
• Probably most significant advance in the 3000 year history of cryptography

• Uses two keys – a public & a private key
• Asymmetric since parties are not equal
• Uses clever application of number theoretic concepts to function
• Complements rather than replaces private key crypto
• Developed to address two key issues:

• Key distribution – how to have secure communications in general
without having to trust a kdc with your key

• Digital signatures – how to verify a message comes intact from the
claimed sender

• Public invention due to whitfield diffie & martin hellman at stanford uni in
1976

• Known earlier in classified community

• Public-key/two-key/asymmetric cryptography involves the use of two keys:
– A public-key, which may be known by anybody, and can be used to

encrypt messages, and verify signatures
– A private-key, known only to the recipient, used to decrypt messages,

and sign (create) signatures

• Is asymmetric because
– Those who encrypt messages or verify signatures cannot decrypt

messages or create signatures

Public-key characteristics
• Public-key algorithms rely on two keys where:

– It is computationally infeasible to find decryption key knowing only
algorithm & encryption key

– It is computationally easy to en/decrypt messages when the relevant
(en/decrypt) key is known

– Either of the two related keys can be used for encryption, with the
other used for decryption (for some algorithms)

Public-key applications
• Can classify uses into 3 categories:

– Encryption/decryption (provide secrecy)
– Digital signatures (provide authentication)
– Key exchange (of session keys)

• Some algorithms are suitable for all uses, others are specific to one

3. Explain RSA method in detail.

RSA
• By rivest, shamir & adleman of mit in 1977
• Best known & widely used public-key scheme
• Based on exponentiation in a finite (galois) field over integers modulo a

prime
– Nb. Exponentiation takes o((log n)3) operations (easy)

• Uses large integers (eg. 1024 bits)
• Security due to cost of factoring large numbers

– Nb. Factorization takes o(e log n log log n) operations (hard)

RSA key setup
• Each user generates a public/private key pair by:
• Selecting two large primes at random - p, q
• Computing their system modulus n=p.q

– Note ø(n)=(p-1)(q-1)
• Selecting at random the encryption key e

• Where 1<e<ø(n), gcd(e,ø(n))=1
• Solve following equation to find decryption key d

– E.d=1 mod ø(n) and 0≤d≤n
• Publish their public encryption key: pu={e,n}

• Keep secret private decryption key: pr={d,n}

RSA works
• Because of euler's theorem:

– Aø(n)mod n = 1 where gcd(a,n)=1
• In rsa have:

– N=p.q
– Ø(n)=(p-1)(q-1)
– Carefully chose e & d to be inverses mod ø(n)
– Hence e.d=1+k.ø(n) for some k

• Hence :
cd = me.d = m1+k.ø(n) = m1.(mø(n))k
 = m1.(1)k = m1 = m mod n

RSA example - key setup
1. Select primes: p=17 & q=11
2. Compute n = pq =17 x 11=187
3. Compute ø(n)=(p–1)(q-1)=16 x 10=160
4. Select e: gcd(e,160)=1; choose e=7
5. Determine d: de=1 mod 160 and d < 160 value is d=23 since 23x7=161=

10x160+1
6. Publish public key pu={7,187}
7. Keep secret private key pr={23,187}

RSA example - en/decryption
• Sample RSA encryption/decryption is:
• Given message m = 88 (nb. 88<187)
• Encryption:

C = 887 mod 187 = 11
• Decryption:

M = 1123 mod 187 = 88

RSA security
• Possible approaches to attacking rsa are:

– Brute force key search (infeasible given size of numbers)
– Mathematical attacks (based on difficulty of computing ø(n), by

factoring modulus n)
– Timing attacks (on running of decryption)
– Chosen ciphertext attacks (given properties of rsa)

Factoring problem
• Mathematical approach takes 3 forms:

– Factor n=p.q, hence compute ø(n) and then d
– Determine ø(n) directly and compute d

– Find d directly
• Currently believe all equivalent to factoring

– Have seen slow improvements over the years
• As of may-05 best is 200 decimal digits (663) bit with ls

– Biggest improvement comes from improved algorithm
• Cf qs to ghfs to ls

– Currently assume 1024-2048 bit rsa is secure
• Ensure p, q of similar size and matching other constraints

4. Describe public key management and cryptosystems

Key management

 Public-key encryption helps address key distribution problems

 Have two aspects of this:
– Distribution of public keys
– Use of public-key encryption to distribute secret keys

Distribution of public keys
 Can be considered as using one of:

– Public announcement
– Publicly available directory
– Public-key authority
– Public-key certificates

Public announcement
 Users distribute public keys to recipients or broadcast to community at large

– Eg. Append pgp keys to email messages or post to news groups or
email list

 Major weakness is forgery
– Anyone can create a key claiming to be someone else and broadcast it
– Until forgery is discovered can masquerade as claimed user

Publicly available directory
 Can obtain greater security by registering keys with a public directory
 Directory must be trusted with properties:

– Contains {name, public-key} entries
– Participants register securely with directory
– Participants can replace key at any time
– Directory is periodically published
– Directory can be accessed electronically

 Still vulnerable to tampering or forgery

Public-key authority
 Improve security by tightening control over distribution of keys from

directory.
 Has properties of directory.
 And requires users to know public key for the directory.
 Then users interact with directory to obtain any desired public key securely.

– Does require real-time access to directory when keys are needed

Public-key certificates

 Certificates allow key exchange without real-time access to public-key
authority.

 A certificate binds identity to public key
– Usually with other info such as period of validity, rights of use etc.

 With all contents signed by a trusted public-key or certificate authority (ca).
 Can be verified by anyone who knows the public-key authorities public-key.

Public-key distribution of secret keys

 Use previous methods to obtain public-key
 Can use for secrecy or authentication
 But public-key algorithms are slow
 So usually want to use private-key encryption to protect message contents
 Hence need a session key
 Have several alternatives for negotiating a suitable session

Public-key distribution of secret keys

 If have securely exchanged public-keys:

Hybrid key distribution

 Retain use of private-key kdc
 Shares secret master key with each user

 Distributes session key using master key
 Public-key used to distribute master keys

– Especially useful with widely distributed users
 Rationale

– Performance
– Backward compatibility

4. Briefly explain the Diffie-Hellman Key Exchange

DIFFIE-HELLMAN KEY EXCHANGE

 First public-key type scheme proposed
 By diffie & hellman in 1976 along with the exposition of public key concepts

– Note: now know that williamson (uk cesg) secretly proposed the
concept in 1970

 Is a practical method for public exchange of a secret key
 Used in a number of commercial products
 A public-key distribution scheme

– Cannot be used to exchange an arbitrary message
– Rather it can establish a common key
– Known only to the two participants

 Value of key depends on the participants (and their private and public key
information)

 Based on exponentiation in a finite (galois) field (modulo a prime or a
polynomial) - easy

 Security relies on the difficulty of computing discrete logarithms (similar to
factoring) – hard

Diffie-hellman setup
 All users agree on global parameters:

– Large prime integer or polynomial q
– A being a primitive root mod q

 Each user (eg. A) generates their key

– Chooses a secret key (number): xa < q
– Compute their public key: ya = axa mod q

 each user makes public that key ya

Diffie-hellman key exchange
 Shared session key for users a & b is kab:

Kab = axa.xb mod q
= yaxb mod q (which b can compute)
= ybxa mod q (which a can compute)
 Kab is used as session key in private-key encryption scheme between alice

and bob
 If alice and bob subsequently communicate, they will have the same key as

before, unless they choose new public-keys
 Attacker needs an x, must solve discrete log

Diffie-hellman example
 Users alice & bob who wish to swap keys:
 Agree on prime q=353 and a=3
 Select random secret keys:

– A chooses xa=97, b chooses xb=233
 Compute respective public keys:

– Ya=397 mod 353 = 40 (alice)
– Yb=3233 mod 353 = 248 (bob)

 Compute shared session key as:
– Kab= ybxa mod 353 = 24897 = 160(alice)
– Kab= yaxb mod 353 = 40233 = 160(bob)

Key exchange protocols
 Users could create random private/public d-h keys each time they

communicate
 Users could create a known private/public d-h key and publish in a directory,

then consulted and used to securely communicate with them
 Both of these are vulnerable to a meet-in-the-middle attack
 Authentication of the keys is needed

5. Briefly describe the idea behind Elliptic Curve Cryptosystems.

 Majority of public-key crypto (rsa, d-h) use either integer or polynomial
arithmetic with very large numbers/polynomials

 Imposes a significant load in storing and processing keys and messages
 An alternative is to use elliptic curves
 Offers same security with smaller bit sizes
 Newer, but not as well analysed

Real elliptic curves

 An elliptic curve is defined by an equation in two variables x & y, with
coefficients

 Consider a cubic elliptic curve of form
– Y2 = x3 + ax + b
– Where x,y,a,b are all real numbers
– Also define zero point o

 Have addition operation for elliptic curve
– Geometrically sum of q+r is reflection of intersection r

Real elliptic curve example

Finite elliptic curves
 Elliptic curve cryptography uses curves whose variables & coefficients are

finite
 Have two families commonly used:

– Prime curves ep(a,b) defined over zp
 Use integers modulo a prime
 Best in software

– Binary curves e2m(a,b) defined over gf(2n)
 Use polynomials with binary coefficients
 Best in hardware

Elliptic curve cryptography
 Ecc addition is analog of modulo multiply
 Ecc repeated addition is analog of modulo exponentiation
 Need “hard” problem equiv to discrete log

– Q=kp, where q,p belong to a prime curve
– Is “easy” to compute q given k,p
– But “hard” to find k given q,p
– Known as the elliptic curve logarithm problem

 Certicom example: e23(9,17)

Ecc diffie-hellman
 Can do key exchange analogous to d-h
 Users select a suitable curve ep(a,b)
 Select base point g=(x1,y1)

– With large order n s.t. Ng=o
 A & b select private keys na<n, nb<n
 Compute public keys: pa=nag, pb=nbg
 Compute shared key: k=napb, k=nbpa

– Same since k=nanbg

Ecc encryption/decryption
 Several alternatives, will consider simplest
 Must first encode any message m as a point on the elliptic curve pm
 Select suitable curve & point g as in d-h
 Each user chooses private key na<n
 And computes public key pa=nag
 To encrypt pm : cm={kg, pm+kpb}, k random
 Decrypt cm compute:

Pm+kpb–nb(kg) = pm+k(nbg)–nb(kg) = pm

Ecc security
 Relies on elliptic curve logarithm problem
 Fastest method is “pollard rho method”
 Compared to factoring, can use much smaller key sizes than with rsa etc
 For equivalent key lengths computations are roughly equivalent
 Hence for similar security ecc offers significant computational advantages

UNIT III
 HASH FUNCTIONS AND DIGITAL SIGNATURES

1. Give a brief notes on message authentications and services.

Message authentication
 Message authentication is concerned with:

 Protecting the integrity of a message
 Validating identity of originator
 Non-repudiation of origin (dispute resolution)

 Will consider the security requirements
 Then three alternative functions used:

 Message encryption
 Message authentication code (mac)
 Hash function

Security requirements

 Disclosure
 Traffic analysis
 Masquerade
 Content modification
 Sequence modification
 Timing modification
 Source repudiation
 Destination repudiation

Message encryption

 Message encryption by itself also provides a measure of authentication

 If symmetric encryption is used then:
 Receiver know sender must have created it
 Since only sender and receiver now key used
 Know content cannot of been altered
 If message has suitable structure, redundancy or a checksum to detect

any changes

 If public-key encryption is used:
 Encryption provides no confidence of sender
 Since anyone potentially knows public-key
 However if

 Sender signs message using their private-key
 Then encrypts with recipients public key
 Have both secrecy and authentication

 Again need to recognize corrupted messages
 But at cost of two public-key uses on message

2. Briefly describe about MAC in detail.

MESSAGE AUTHENTICATION CODE (MAC)

 Generated by an algorithm that creates a small fixed-sized block
 Depending on both message and some key
 Like encryption though need not be reversible

 Appended to message as a signature
 Receiver performs same computation on message and checks it matches the

mac
 Provides assurance that message is unaltered and comes from sender

Message authentication code

 As shown the mac provides authentication
 Can also use encryption for secrecy

 Generally use separate keys for each
 Can compute mac either before or after encryption
 Is generally regarded as better done before

 Why use a mac?
 Sometimes only authentication is needed
 Sometimes need authentication to persist longer than the encryption

(eg. Archival use)
 Note that a mac is not a digital signature

MAC properties
 A mac is a cryptographic checksum

mac = ck(m)
 Condenses a variable-length message m
 Using a secret key k
 To a fixed-sized authenticator

 Is a many-to-one function
 Potentially many messages have same mac
 But finding these needs to be very difficult

Requirements for MACS
 Taking into account the types of attacks
 Need the mac to satisfy the following:

1. Knowing a message and mac, is infeasible to find another message
with same mac

2. Macs should be uniformly distributed
3. Mac should depend equally on all bits of the message

Using symmetric ciphers for macs
 Can use any block cipher chaining mode and use final block as a mac
 Data authentication algorithm (daa) is a widely used mac based on des-

cbc
 Using iv=0 and zero-pad of final block
 Encrypt message using des in cbc mode
 And send just the final block as the mac

 Or the leftmost m bits (16≤m≤64) of final block

 But final mac is now too small for security

Data authentication algorithm

3. Write about the security hash functions in detail.

 Condenses arbitrary message to fixed size
H = h(m)
 Usually assume that the hash function is public and not keyed

 Cf. Mac which is keyed
 Hash used to detect changes to message
 Can use in various ways with message
 Most often to create a digital signature

Hash functions & digital signatures

Requirements for hash functions

1. Can be applied to any sized message m
2. Produces fixed-length output h
3. Is easy to compute h=h(m) for any message m
4. Given h is infeasible to find x s.t. H(x)=h

• One-way property
5. Given x is infeasible to find y s.t. H(y)=h(x)

• Weak collision resistance
6. Is infeasible to find any x,y s.t. H(y)=h(x)

• Strong collision resistance

Simple hash functions
 Are several proposals for simple functions
 Based on xor of message blocks
 Not secure since can manipulate any message and either not change hash or

change hash also
 Need a stronger cryptographic function (next chapter)

Birthday attacks

 Might think a 64-bit hash is secure
 But by birthday paradox is not
 Birthday attack works thus:

 Opponent generates 2m/2 variations of a valid message all with
essentially the same meaning

 Opponent also generates 2m/2 variations of a desired fraudulent
message

 Two sets of messages are compared to find pair with same hash
(probability > 0.5 by birthday paradox)

 Have user sign the valid message, then substitute the forgery which
will have a valid signature

 Conclusion is that need to use larger mac/hash

Block ciphers as hash functions
 Can use block ciphers as hash functions

 Using h0=0 and zero-pad of final block
 Compute: hi = emi [hi-1]
 And use final block as the hash value
 Similar to cbc but without a key

 Resulting hash is too small (64-bit)
 Both due to direct birthday attack
 And to “meet-in-the-middle” attack

 Other variants also susceptible to attack

Hash functions & MAC security
 Like block ciphers have:
 Brute-force attacks exploiting

 Strong collision resistance hash have cost 2m/2
 Have proposal for h/w md5 cracker
 128-bit hash looks vulnerable, 160-bits better

 Macs with known message-mac pairs

 Can either attack keyspace (cf key search) or mac
 At least 128-bit mac is needed for security

 Cryptanalytic attacks exploit structure
 Like block ciphers want brute-force attacks to be the best alternative

 Have a number of analytic attacks on iterated hash functions
 Cvi = f[cvi-1, mi]; h(m)=cvn
 Typically focus on collisions in function f
 Like block ciphers is often composed of rounds
 Attacks exploit properties of round functions

Hash and mac algorithms
 Hash functions

 Condense arbitrary size message to fixed size
 By processing message in blocks
 Through some compression function
 Either custom or block cipher based

 Message authentication code (mac)
 Fixed sized authenticator for some message
 To provide authentication for message
 By using block cipher mode or hash function

Hash algorithm structure

4. Illustrate Secure Hash algorithm in detail and classify its performance.

SECURE HASH ALGORITHM
 Sha originally designed by nist & nsa in 1993
 Was revised in 1995 as sha-1
 Us standard for use with dsa signature scheme

 Standard is fips 180-1 1995, also internet rfc3174
 Nb. The algorithm is sha, the standard is shs

 Based on design of md4 with key differences
 Produces 160-bit hash values
 Recent 2005 results on security of sha-1 have raised concerns on its use in

future applications

Revised secure hash standard
 Nist issued revision fips 180-2 in 2002
 Adds 3 additional versions of sha

 Sha-256, sha-384, sha-512
 Designed for compatibility with increased security provided by the aes

cipher
 Structure & detail is similar to sha-1
 Hence analysis should be similar
 But security levels are rather higher

Sha-512 overview

Sha-512 compression function
 Heart of the algorithm
 Processing message in 1024-bit blocks
 Consists of 80 rounds

 Updating a 512-bit buffer
 Using a 64-bit value wt derived from the current message block
 And a round constant based on cube root of first 80 prime numbers

Sha-512 round function

KEYED HASH FUNCTIONS AS MACS
 Want a mac based on a hash function

 Because hash functions are generally faster
 Code for crypto hash functions widely available

 Hash includes a key along with message
 Original proposal:

 keyedhash = hash(key|message)
 Some weaknesses were found with this

 Eventually led to development of hmac

HMAC
 Specified as internet standard rfc2104
 Uses hash function on the message:

Hmack = hash[(k+ xor opad) ||
hash[(k+ xor ipad)||m)]]

 Where k+ is the key padded out to size
 And opad, ipad are specified padding constants
 Overhead is just 3 more hash calculations than the message needs alone
 Any hash function can be used

 Eg. Md5, sha-1, ripemd-160, whirlpool
HMAC SECURITY
 Proved security of hmac relates to that of the underlying hash algorithm
 Attacking hmac requires either:

 Brute force attack on key used
 Birthday attack (but since keyed would need to observe a very large

number of messages)
 Choose hash function used based on speed verses security constraints

CMAC
 Previously saw the daa (cbc-mac)
 Widely used in govt & industry
 But has message size limitation
 Can overcome using 2 keys & padding
 Thus forming the cipher-based message authentication code (cmac)
 Adopted by nist sp800-38b

CMAC OVERVIEW

RIPEMD-160
 Ripemd-160 was developed in europe as part of ripe project in 96
 By researchers involved in attacks on md4/5
 Initial proposal strengthen following analysis to become ripemd-160
 Somewhat similar to md5/sha
 Uses 2 parallel lines of 5 rounds of 16 steps
 Creates a 160-bit hash value
 Slower, but probably more secure, than sha

RIPEMD-160 OVERVIEW
1. Pad message so its length is 448 mod 512
2. Append a 64-bit length value to message
3. Initialise 5-word (160-bit) buffer (a,b,c,d,e) to

(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)
1. Process message in 16-word (512-bit) chunks:

 Use 10 rounds of 16 bit operations on message block & buffer – in 2
parallel lines of 5

 Add output to input to form new buffer value
2. Output hash value is the final buffer value

RIPEMD-160 ROUND

RIPEMD-160 COMPRESSION FUNCTION

RIPEMD-160 design criteria
 Use 2 parallel lines of 5 rounds for increased complexity
 For simplicity the 2 lines are very similar
 Step operation very close to md5
 Permutation varies parts of message used
 Circular shifts designed for best results

RIPEMD-160 verses md5 & sha-1
 Brute force attack harder (160 like sha-1 vs 128 bits for md5)
 Not vulnerable to known attacks, like sha-1 though stronger (compared to

md4/5)
 Slower than md5 (more steps)
 All designed as simple and compact
 Sha-1 optimised for big endian cpu's vs ripemd-160 & md5 optimised for

little endian cpu’s

5. Describe Digital Signature standard and authentication protocols.

Digital signatures
 Have looked at message authentication

 But does not address issues of lack of trust
 Digital signatures provide the ability to:

 Verify author, date & time of signature
 Authenticate message contents
 Be verified by third parties to resolve disputes

 Hence include authentication function with additional capabilities

Digital signature properties
 Must depend on the message signed
 Must use information unique to sender

 To prevent both forgery and denial
 Must be relatively easy to produce
 Must be relatively easy to recognize & verify
 Be computationally infeasible to forge

 With new message for existing digital signature
 With fraudulent digital signature for given message

 Be practical save digital signature in storage

Direct digital signatures
 Involve only sender & receiver
 Assumed receiver has sender’s public-key
 Digital signature made by sender signing entire message or hash with

private-key
 Can encrypt using receivers public-key
 Important that sign first then encrypt message & signature
 Security depends on sender’s private-key

Arbitrated digital signatures
 Involves use of arbiter a

 Validates any signed message
 Then dated and sent to recipient

 Requires suitable level of trust in arbiter
 Can be implemented with either private or public-key algorithms
 Arbiter may or may not see message

AUTHENTICATION PROTOCOLS
 Used to convince parties of each others identity and to exchange session keys
 May be one-way or mutual
 Key issues are

 Confidentiality – to protect session keys

 Timeliness – to prevent replay attacks
 Published protocols are often found to have flaws and need to be modified

Replay attacks
 Where a valid signed message is copied and later resent

 Simple replay
 Repetition that can be logged
 Repetition that cannot be detected
 Backward replay without modification

 Countermeasures include
 Use of sequence numbers (generally impractical)
 Timestamps (needs synchronized clocks)
 Challenge/response (using unique nonce)

Using symmetric encryption
 As discussed previously can use a two-level hierarchy of keys
 Usually with a trusted key distribution center (kdc)

 Each party shares own master key with kdc
 Kdc generates session keys used for connections between parties
 Master keys used to distribute these to them

Using public-key encryption
 Have a range of approaches based on the use of public-key encryption
 Need to ensure have correct public keys for other parties
 Using a central authentication server (as)
 Various protocols exist using timestamps or nonces

One-way authentication
 Required when sender & receiver are not in communications at same time

(eg. Email)
 Have header in clear so can be delivered by email system
 May want contents of body protected & sender authenticated

Using symmetric encryption
 Can refine use of kdc but can’t have final exchange of nonces, vis:

1. A->kdc: ida || idb || n1
2. Kdc -> a: eka[ks || idb || n1 || ekb[ks||ida]]
3. A -> b: ekb[ks||ida] || eks[m]
 does not protect against replays

 Could rely on timestamp in message, though email delays make this
problematic

Public-key approaches
 Have seen some public-key approaches
 If confidentiality is major concern, can use:

A->b: epub[ks] || eks[m]

 Has encrypted session key, encrypted message
 If authentication needed use a digital signature with a digital certificate:

A->b: m || epra[h(m)] || epras[t||ida||pua]
 With message, signature, certificate

6. Briefly Explain about Digital signature algorithm

 Us govt approved signature scheme
 Designed by nist & nsa in early 90's
 Published as fips-186 in 1991
 Revised in 1993, 1996 & then 2000
 Uses the sha hash algorithm
 Dss is the standard, dsa is the algorithm
 Fips 186-2 (2000) includes alternative rsa & elliptic curve signature variants

Digital signature algorithm (DSA)
 Creates a 320 bit signature
 With 512-1024 bit security
 Smaller and faster than rsa
 A digital signature scheme only
 Security depends on difficulty of computing discrete logarithms
 Variant of elgamal & schnorr schemes

DSA key generation
 Have shared global public key values (p,q,g):

 Choose q, a 160 bit
 Choose a large prime p = 2l

 Where l= 512 to 1024 bits and is a multiple of 64
 And q is a prime factor of (p-1)

 Choose g = h(p-1)/q

 Where h<p-1, h(p-1)/q (mod p) > 1
 Users choose private & compute public key:

 Choose x<q
 Compute y = gx (mod p)

DSA Signature creation
 To sign a message m the sender:

 Generates a random signature key k, k<q
 Nb. K must be random, be destroyed after use, and never be reused

 Then computes signature pair:
R = (gk(mod p))(mod q)
S = (k-1.h(m)+ x.r)(mod q)
 Sends signature (r,s) with message m

DSA signature verification
 Having received m & signature (r,s)
 To verify a signature, recipient computes:

W = s-1(mod q)
U1= (h(m).w)(mod q)
U2= (r.w)(mod q)
V = (gu1.yu2(mod p)) (mod q)
 If v=r then signature is verified
 See book web site for details of proof why

UNIT IV
SECURITY PRACTICE & SYSTEM SECURITY

1. Elaborately explain Kerberos authentication mechanism with suitable diagrams.

KERBEROS
 Trusted key server system from mit
 Provides centralised private-key third-party authentication in a distributed

network
 Allows users access to services distributed through network
 Without needing to trust all workstations
 Rather all trust a central authentication server

 Two versions in use: 4 & 5

Kerberos requirements
 Its first report identified requirements as:

 Secure
 Reliable
 Transparent
 Scalable

 Implemented using an authentication protocol based on needham-schroeder

Simple authentication
 C->as : idc || pc || idv
 As->c : ticket
 C->v : idc||ticket
 Ticket=e(kv, [idc || adc|| idv])

 What adc plays here?

A more secure authentication
 Problem to be addressed
 1. Repeated password requirement
 2. Capture passwords, ie plain msg pwd.

 To solve this kerberos introduced tgs concept.

Kerberos v4
 A basic third-party authentication scheme
 Have an authentication server (as)

 Users initially negotiate with as to identify self
 As provides a non-corruptible authentication credential (ticket granting

ticket tgt)
 Have a ticket granting server (tgs)

 Users subsequently request access to other services from tgs on basis of
users tgt

Kerberos v4 dialogue
1. Obtain ticket granting ticket from as

• Once per session
2. Obtain service granting ticket from tgt

• For each distinct service required
3. Client/server exchange to obtain service

• On every service request
Dialogues
 C->as: idc || idtgs
 As->c: e(kc,ticket tgs)
 C->tgs: idc||idv||ticket tgs
 Tgs->c: ticket v
 C->v: idc||ticket v
 Ticket tgs =e(ktgs,[idc||adc||idtgs||ts1||lt1])
 Ticket v = e(kv,[idc||adc||idv||ts2||lt2])

Kerberos realms
 A kerberos environment consists of:

 A kerberos server
 A number of clients, all registered with server
 Application servers, sharing keys with server

 This is termed a realm
 Typically a single administrative domain

 If have multiple realms, their kerberos servers must share keys and trust

Kerberos version 5
 Developed in mid 1990’s
 Specified as internet standard rfc 1510
 Provides improvements over v4

 Addresses environmental shortcomings
• Encryption alg, network protocol, byte order, ticket lifetime,

authentication forwarding, interrealm auth
 And technical deficiencies

• Double encryption, non-std mode of use, session keys, password
attacks

Environmental shortcomings

Encryption Algorithm:
 1. Can use any algorithm.
 2. V4 uses DES algorithm.

• Internet protocol dependence:
 v4 uses IP address, ISO network address was not adopted. V5 uses any network
address type.

Message byte ordering:
 Msg byte ordering done by the sender, v5 uses ans.1 and ber ie no ambiguous byte
ordering.

Ticket life time:

 lt can be expressed in 8bit quantity of five minutes. Ie max 21 hrs can be expressed.
 v5 uses arbitrary lt.

Authentication fwd:
 No credential fwds to others, v5 supports.

Inter-realm authentication:
 Handled in v5 better than v4.

Comparing the dlg of k4 & k5
 Msg->1 :
 1. Realm: indicates the realm of the user

 2. Options: used to request certain flags be set in the returned ticket.
 3. Times: used by the client to request the following times in the tickets.
 From: start time of validation of ticket
 Till: time period.
 Rtime: renew till time.
 4. Nonce: to stop replay attack.
 Msg 5/ 6:

 1. Subkey: to protect this application session by using a specific key. If omitted then
kc,v is assumed as session key.

 2. Sequence number: optional field to specify the sequence number.

Some ticket flags
 Renewable

 Long lived tickets are risky (may be stolen and the opponent use until the
expiration time)

 Short lived ones cause protocol overheads
• For tgt, the user should enter password for each ticket

 Solution: ticket originally has short lifetime, but can be periodically (and
automatically) renewed

• Until renew-till time specified in the ticket
• Unless tgs or as refuses to renew it (if stolen)

 Proxiable / proxy
 If a tgt is proxiable, then tgs may issue proxy tickets that the ticket owner

(say alice) may give some other servers that may act on behalf of alice
 Forwardable / forwarded

 More powerful than proxy
• Proxy flag can be set only in server tickets
• Forwarded flag can be set also in tgts

 If a tgt bears a forwardable flag set, than tgs may issue forwarded tgts for
a nearby realm

• Nearby realm’s tgs may either forward or issue a server ticket.

• In this way, realms can be connected

2. Give a brief notes on X.509 Authentication Service

 Part of ccitt x.500 directory service standards
 Distributed servers maintaining user info database

 Defines framework for authentication services
 Directory may store public-key certificates
 With public key of user signed by certification authority

 Also defines authentication protocols
 Uses public-key crypto & digital signatures

 Algorithms not standardised, but rsa recommended
 X.509 certificates are widely used

X.509 certificates
 Issued by a certification authority (ca), containing:

 Version (1, 2, or 3)
 Serial number (unique within ca) identifying certificate
 Signature algorithm identifier
 Issuer x.500 name (ca)
 Period of validity (from - to dates)
 Subject x.500 name (name of owner)
 Subject public-key info (algorithm, parameters, key)
 Issuer unique identifier (v2+)
 Subject unique identifier (v2+)
 Extension fields (v3)
 Signature (of hash of all fields in certificate)

 Notation ca<<a>> denotes certificate for a signed by ca

Obtaining a certificate
 Any user with access to ca can get any certificate from it
 Only the ca can modify a certificate
 Because cannot be forged, certificates can be placed in a public directory

CA hierarchy
 If both users share a common ca then they are assumed to know its public key
 Otherwise ca's must form a hierarchy
 Use certificates linking members of hierarchy to validate other ca's

 Each ca has certificates for clients (forward) and parent (backward)
 Each client trusts parents certificates
 Enable verification of any certificate from one ca by users of all other cas in

hierarchy
CA hierarchy use

Certificate revocation
 Certificates have a period of validity
 May need to revoke before expiry, eg:

1. User's private key is compromised
2. User is no longer certified by this ca
3. Ca's certificate is compromised

 Ca’s maintain list of revoked certificates
1. The certificate revocation list (crl)

 Users should check certificates with ca’s crl

Authentication procedures
 X.509 includes three alternative authentication procedures:
 One-way authentication
 Two-way authentication
 Three-way authentication
 All use public-key signatures

One-way authentication
 1 message (a->b) used to establish

 The identity of a and that message is from a
 Message was intended for b
 Integrity & originality of message

 Message must include timestamp, nonce, b's identity and is signed by a
 May include additional info for b

 Eg session key

Two-way authentication
 2 messages (a->b, b->a) which also establishes in addition:

 The identity of b and that reply is from b
 That reply is intended for a
 Integrity & originality of reply

 Reply includes original nonce from a, also timestamp and nonce from b
 May include additional info for a

Three-way authentication
 3 messages (a->b, b->a, a->b) which enables above authentication without

synchronized clocks
 Has reply from a back to b containing signed copy of nonce from b
 Means that timestamps need not be checked or relied upon

X.509 VERSION 3
 Has been recognised that additional information is needed in a certificate

 Email/url, policy details, usage constraints
 Rather than explicitly naming new fields defined a general extension method
 Extensions consist of:

 Extension identifier
 Criticality indicator
 Extension value

Certificate extensions
 Key and policy information

 Convey info about subject & issuer keys, plus indicators of certificate
policy

 Certificate subject and issuer attributes
 Support alternative names, in alternative formats for certificate subject

and/or issuer
 Certificate path constraints

 Allow constraints on use of certificates by other ca’s

Public key infrastructure

ELECTRONIC MAIL SECURITY
 Email is one of the most widely used and regarded network services
 Currently message contents are not secure

 May be inspected either in transit
 Or by suitably privileged users on destination system

Email security enhancements
 Confidentiality

 Protection from disclosure
 Authentication

 Of sender of message
 Message integrity

 Protection from modification
 Non-repudiation of origin

 Protection from denial by sender

3. Explain Pretty Good Privacy in detail

PRETTY GOOD PRIVACY (PGP)
 Widely used de facto secure email
 Developed by phil zimmermann
 Selected best available crypto algs to use
 Integrated into a single program
 On unix, pc, macintosh and other systems
 Originally free, now also have commercial versions available

PGP operation – authentication
1. Sender creates message

2. Use sha-1 to generate 160-bit hash of message
3. Signed hash with rsa using sender's private key, and is attached to message
4. Receiver uses rsa with sender's public key to decrypt and recover hash code
5. Receiver verifies received message using hash of it and compares with decrypted

hash code

PGP operation – confidentiality
1. Sender generates message and 128-bit random number as session key for it
2. Encrypt message using cast-128 / idea / 3des in cbc mode with session key
3. Session key encrypted using rsa with recipient's public key, & attached to msg
4. Receiver uses rsa with private key to decrypt and recover session key
5. Session key is used to decrypt message

PGP operation – confidentiality & authentication
 Can use both services on same message

 Create signature & attach to message
 Encrypt both message & signature
 Attach rsa/elgamal encrypted session key

PGP operation – compression
 By default pgp compresses message after signing but before encrypting

 So can store uncompressed message & signature for later verification
 & because compression is non deterministic

 Uses zip compression algorithm

PGP operation – email compatibility
 When using pgp will have binary data to send (encrypted message etc)
 However email was designed only for text
 Hence pgp must encode raw binary data into printable ascii characters
 Uses radix-64 algorithm

 Maps 3 bytes to 4 printable chars
 Also appends a crc

 Pgp also segments messages if too big

PGP session keys
 Need a session key for each message

 Of varying sizes: 56-bit des, 128-bit cast or idea, 168-bit triple-des
 Generated using ansi x12.17 mode
 Uses random inputs taken from previous uses and from keystroke timing of user

PGP public & private keys
 Since many public/private keys may be in use, need to identify which is actually

used to encrypt session key in a message
 Could send full public-key with every message
 But this is inefficient

 Rather use a key identifier based on key

 Is least significant 64-bits of the key
 Will very likely be unique

 Also use key id in signatures

PGP message format

PGP key rings
 Each pgp user has a pair of keyrings:

 Public-key ring contains all the public-keys of other pgp users known to
this user, indexed by key id

 Private-key ring contains the public/private key pair(s) for this user,
indexed by key id & encrypted keyed from a hashed passphrase

 Security of private keys thus depends on the pass-phrase security

PGP message generation

PGP message reception

PGP key management
 Rather than relying on certificate authorities
 In pgp every user is own ca

 Can sign keys for users they know directly
 Forms a “web of trust”

 Trust keys have signed
 Can trust keys others have signed if have a chain of signatures to them

 Key ring includes trust indicators
 Users can also revoke their keys

4. Describe Secure Multi Purpose Internet Mail Extentions.

S/MIME (SECURE/MULTIPURPOSE INTERNET MAIL EXTENSIONS)
 Security enhancement to mime email

 Original internet rfc822 email was text only
 Mime provided support for varying content types and multi-part messages
 With encoding of binary data to textual form
 S/mime added security enhancements

 Have s/mime support in many mail agents
 Eg ms outlook, mozilla, mac mail etc

S/MIME functions
 Enveloped data

 Encrypted content and associated keys
 Signed data

 Encoded message + signed digest
 Clear-signed data

 Cleartext message + encoded signed digest
 Signed & enveloped data

 Nesting of signed & encrypted entities

S/MIME cryptographic algorithms
 Digital signatures: dss & rsa
 Hash functions: sha-1 & md5
 Session key encryption: elgamal & rsa
 Message encryption: aes, triple-des, rc2/40 and others
 Mac: hmac with sha-1
 Have process to decide which algs to use

S/MIME messages
 S/mime secures a mime entity with a signature, encryption, or both
 Forming a mime wrapped pkcs object
 Have a range of content-types:

 Enveloped data
 Signed data
 Clear-signed data
 Registration request
 Certificate only message

S/MIME certificate processing
 S/mime uses x.509 v3 certificates
 Managed using a hybrid of a strict x.509 ca hierarchy & pgp’s web of trust
 Each client has a list of trusted ca’s certs
 And own public/private key pairs & certs
 Certificates must be signed by trusted ca’s

Certificate authorities
 Have several well-known ca’s
 Verisign one of most widely used
 Verisign issues several types of digital ids
 Increasing levels of checks & hence trust

Class identity checks usage
1 name/email check web browsing/email
2 enroll/addr check email, subs, s/w validate
3 id documents e-banking/service access

IP SECURITY
 Have a range of application specific security mechanisms

 Eg. S/mime, pgp, kerberos, ssl/https
 However there are security concerns that cut across protocol layers
 Would like security implemented by the network for all applications
 General ip security mechanisms
 Provides

 Authentication
 Confidentiality
 Key management

 Applicable to use over lans, across public & private wans, & for the internet

IPSEC uses

Benefits of IPSEC
 In a firewall/router provides strong security to all traffic crossing the perimeter
 In a firewall/router is resistant to bypass
 Is below transport layer, hence transparent to applications
 Can be transparent to end users
 Can provide security for individual users
 Secures routing architecture

IP security architecture
 Specification is quite complex
 Defined in numerous rfc’s

 Incl. Rfc 2401/2402/2406/2408
 Many others, grouped by category

 Mandatory in ipv6, optional in ipv4
 Have two security header extensions:

 Authentication header (ah)
 Encapsulating security payload (esp)

IPSEC services
 Access control
 Connectionless integrity
 Data origin authentication
 Rejection of replayed packets

 A form of partial sequence integrity
 Confidentiality (encryption)
 Limited traffic flow confidentiality

Security associations
 A one-way relationship between sender & receiver that affords security for traffic

flow
 Defined by 3 parameters:

 Security parameters index (spi)
 Ip destination address
 Security protocol identifier

 Has a number of other parameters
 Seq no, ah & eh info, lifetime etc

 Have a database of security associations

Authentication header (AH)
 Provides support for data integrity & authentication of ip packets

 End system/router can authenticate user/app
 Prevents address spoofing attacks by tracking sequence numbers

 Based on use of a mac
 Hmac-md5-96 or hmac-sha-1-96

 Parties must share a secret key

Authentication header

Encapsulating security payload (ESP)
 Provides message content confidentiality & limited traffic flow confidentiality
 Can optionally provide the same authentication services as ah
 Supports range of ciphers, modes, padding

 Incl. Des, triple-des, rc5, idea, cast etc
 Cbc & other modes
 Padding needed to fill blocksize, fields, for traffic flow

Encapsulating security payload

Transport vs tunnel mode ESP
 Transport mode is used to encrypt & optionally authenticate ip data

 Data protected but header left in clear
 Can do traffic analysis but is efficient
 Good for esp host to host traffic

 Tunnel mode encrypts entire ip packet
 Add new header for next hop
 Good for vpns, gateway to gateway security

Combining security associations
 Sa’s can implement either ah or esp
 To implement both need to combine sa’s

 Form a security association bundle
 May terminate at different or same endpoints
 Combined by

• Transport adjacency
• Iterated tunneling

 Issue of authentication & encryption order

Oakley
 A key exchange protocol
 Based on diffie-hellman key exchange
 Adds features to address weaknesses

 Cookies, groups (global params), nonces, dh key exchange with
authentication

 Can use arithmetic in prime fields or elliptic curve fields

ISAKMP
 Internet security association and key management protocol
 Provides framework for key management
 Defines procedures and packet formats to establish, negotiate, modify, & delete

sas
 Independent of key exchange protocol, encryption alg, & authentication method

ISAKMP payloads & exchanges
 Have a number of isakmp payload types:

 Security, proposal, transform, key, identification, certificate, certificate,
hash, signature, nonce, notification, delete

 isakmp has framework for 5 types of message exchanges:
 Base, identity protection, authentication only, aggressive, informational

4.8WEB SECURITY
 Web now widely used by business, government, individuals
 But internet & web are vulnerable
 Have a variety of threats

 Integrity
 Confidentiality
 Denial of service
 Authentication

 Need added security mechanisms

SSL (SECURE SOCKET LAYER)
 Transport layer security service
 Originally developed by netscape
 Version 3 designed with public input
 Subsequently became internet standard known as tls (transport layer security)
 Uses tcp to provide a reliable end-to-end service
 Ssl has two layers of protocols

SSL architecture

 SSL Connection
 A transient, peer-to-peer, communications link
 Associated with 1 ssl session

 SSL session
 An association between client & server
 Created by the handshake protocol
 Define a set of cryptographic parameters
 May be shared by multiple ssl connections

SSL record protocol services
 Message integrity

 Using a mac with shared secret key
 Similar to hmac but with different padding

 Confidentiality
 Using symmetric encryption with a shared secret key defined by

handshake protocol
 Aes, idea, rc2-40, des-40, des, 3des, fortezza, rc4-40, rc4-128
 Message is compressed before encryption

SSL record protocol operation

SSL alert protocol
 Conveys ssl-related alerts to peer entity
 Severity

• Warning or fatal
 Specific alert

• Fatal: unexpected message, bad record mac, decompression failure,
handshake failure, illegal parameter

• Warning: close notify, no certificate, bad certificate, unsupported
certificate, certificate revoked, certificate expired, certificate
unknown

 Compressed & encrypted like all ssl data
SSL handshake protocol
 Allows server & client to:

 Authenticate each other
 To negotiate encryption & mac algorithms
 To negotiate cryptographic keys to be used

 Comprises a series of messages in phases
 Establish security capabilities
 Server authentication and key exchange
 Client authentication and key exchange
 Finish

TLS (transport layer security)
 Ietf standard rfc 2246 similar to sslv3
 With minor differences

 In record format version number
 Uses hmac for mac
 A pseudo-random function expands secrets
 Has additional alert codes
 Some changes in supported ciphers
 Changes in certificate types & negotiations
 Changes in crypto computations & padding

5. Briefly explain Secure Electronic Transactions.

 Open encryption & security specification
 To protect internet credit card transactions
 Developed in 1996 by mastercard, visa etc
 Not a payment system
 Rather a set of security protocols & formats

 Secure communications amongst parties
 Trust from use of x.509v3 certificates
 Privacy by restricted info to those who need it

SET components

SET transaction
1. Customer opens account
2. Customer receives a certificate
3. Merchants have their own certificates
4. Customer places an order
5. Merchant is verified
6. Order and payment are sent
7. Merchant requests payment authorization
8. Merchant confirms order
9. Merchant provides goods or service
10. Merchant requests payment

Dual signature
 Customer creates dual messages

 Order information (oi) for merchant
 Payment information (pi) for bank

 Neither party needs details of other
 But must know they are linked
 Use a dual signature for this

 Signed concatenated hashes of oi & pi
Ds=e(prc, [h(h(pi)||h(oi))])

SET purchase request
 Set purchase request exchange consists of four messages

1. Initiate request - get certificates
2. Initiate response - signed response
3. Purchase request - of oi & pi
4. Purchase response - ack order

Purchase request – merchant
1. Verifies cardholder certificates using ca sigs
2. Verifies dual signature using customer's public signature key to ensure order has

not been tampered with in transit & that it was signed using cardholder's private
signature key

3. Processes order and forwards the payment information to the payment gateway
for authorization (described later)

4. Sends a purchase response to cardholder

Payment gateway authorization
1. Verifies all certificates
2. Decrypts digital envelope of authorization block to obtain symmetric key & then

decrypts authorization block
3. Verifies merchant's signature on authorization block
4. Decrypts digital envelope of payment block to obtain symmetric key & then

decrypts payment block
5. Verifies dual signature on payment block
6. Verifies that transaction id received from merchant matches that in pi received

(indirectly) from customer
7. Requests & receives an authorization from issuer
8. Sends authorization response back to merchant

Payment capture
 Merchant sends payment gateway a payment capture request
 Gateway checks request
 Then causes funds to be transferred to merchants account
 Notifies merchant using capture response

UNIT V
 E-MAIL, IP & WEB SECURITY

1. Write short notes on Intrusion Detections.

 Significant issue for networked systems is hostile or unwanted access
 Either via network or local
 Can identify classes of intruders:

 Masquerader
 Misfeasor
 Clandestine user

 Varying levels of competence
 Clearly a growing publicized problem

 From “wily hacker” in 1986/87
 To clearly escalating cert stats

 May seem benign, but still cost resources
 May use compromised system to launch other attacks
 Awareness of intruders has led to the development of certs

Intrusion techniques
 Aim to gain access and/or increase privileges on a system
 Basic attack methodology

 Target acquisition and information gathering
 Initial access
 Privilege escalation
 Covering tracks

 Key goal often is to acquire passwords
 So then exercise access rights of owner

Password guessing
 One of the most common attacks
 Attacker knows a login (from email/web page etc)
 Then attempts to guess password for it

 Defaults, short passwords, common word searches
 User info (variations on names, birthday, phone, common words/interests)
 Exhaustively searching all possible passwords

 Check by login or against stolen password file
 Success depends on password chosen by user
 Surveys show many users choose poorly

Password capture
 Another attack involves password capture

 Watching over shoulder as password is entered
 Using a trojan horse program to collect
 Monitoring an insecure network login

• Eg. Telnet, ftp, web, email
 Extracting recorded info after successful login (web history/cache, last

number dialled etc)
 Using valid login/password can impersonate user
 Users need to be educated to use suitable precautions/countermeasures

Intrusion detection
 Inevitably will have security failures
 So need also to detect intrusions so can

 Block if detected quickly
 Act as deterrent
 Collect info to improve security

 Assume intruder will behave differently to a legitimate user
 But will have imperfect distinction between

Approaches to intrusion detection

 Statistical anomaly detection
 Threshold
 Profile based

 Rule-based detection
 Anomaly
 Penetration identification

Audit records
 Fundamental tool for intrusion detection
 Native audit records

 Part of all common multi-user o/s
 Already present for use
 May not have info wanted in desired form

 Detection-specific audit records
 Created specifically to collect wanted info
 At cost of additional overhead on system

Statistical anomaly detection
 Threshold detection

 Count occurrences of specific event over time
 If exceed reasonable value assume intrusion
 Alone is a crude & ineffective detector

 Profile based
 Characterize past behavior of users
 Detect significant deviations from this
 Profile usually multi-parameter

Audit record analysis
 Foundation of statistical approaches
 Analyze records to get metrics over time

 Counter, gauge, interval timer, resource use
 Use various tests on these to determine if current behavior is acceptable

 Mean & standard deviation, multivariate, markov process, time series,
operational

 Key advantage is no prior knowledge used

Rule-based intrusion detection
 Observe events on system & apply rules to decide if activity is suspicious or not
 Rule-based anomaly detection

 Analyze historical audit records to identify usage patterns & auto-generate
rules for them

 Then observe current behavior & match against rules to see if conforms
 Like statistical anomaly detection does not require prior knowledge of

security flaws
 Rule-based penetration identification

 Uses expert systems technology

 With rules identifying known penetration, weakness patterns, or
suspicious behavior

 Compare audit records or states against rules
 Rules usually machine & o/s specific
 Rules are generated by experts who interview & codify knowledge of

security admins
 Quality depends on how well this is done

Base-rate fallacy
 Practically an intrusion detection system needs to detect a substantial percentage

of intrusions with few false alarms
 If too few intrusions detected -> false security
 If too many false alarms -> ignore / waste time

 This is very hard to do
 Existing systems seem not to have a good record

Distributed intrusion detection
 Traditional focus is on single systems
 But typically have networked systems
 More effective defense has these working together to detect intrusions
 Issues

 Dealing with varying audit record formats
 Integrity & confidentiality of networked data
 Centralized or decentralized architecture

Distributed intrusion detection - architecture

Distributed intrusion detection – agent implementation

Honeypots
 Decoy systems to lure attackers

 Away from accessing critical systems
 To collect information of their activities
 To encourage attacker to stay on system so administrator can respond

 Are filled with fabricated information
 Instrumented to collect detailed information on attackers activities
 Single or multiple networked systems
 Cf ietf intrusion detection wg standards

2. Briefly explain about Password Management

 Front-line defense against intruders
 Users supply both:

 Login – determines privileges of that user
 Password – to identify them

 Passwords often stored encrypted
 Unix uses multiple des (variant with salt)
 More recent systems use crypto hash function

 Should protect password file on system

Password studies
 Purdue 1992 - many short passwords
 Klein 1990 - many guessable passwords
 Conclusion is that users choose poor passwords too often

 Need some approach to counter this

Managing passwords - education
 Can use policies and good user education
 Educate on importance of good passwords
 Give guidelines for good passwords

 Minimum length (>6)
 Require a mix of upper & lower case letters, numbers, punctuation
 Not dictionary words

 But likely to be ignored by many users

Managing passwords - computer generated
 Let computer create passwords
 If random likely not memorisable, so will be written down (sticky label

syndrome)
 Even pronounceable not remembered
 Have history of poor user acceptance
 Fips pub 181 one of best generators

 Has both description & sample code
 Generates words from concatenating random pronounceable syllables

Managing passwords - reactive checking
 Reactively run password guessing tools

 Note that good dictionaries exist for almost any language/interest group
 Cracked passwords are disabled
 But is resource intensive
 Bad passwords are vulnerable till found

Managing passwords - proactive checking
 Most promising approach to improving password security
 Allow users to select own password
 But have system verify it is acceptable

 Simple rule enforcement (see earlier slide)
 Compare against dictionary of bad passwords
 Use algorithmic (markov model or bloom filter) to detect poor choices

3. Define virus. Explain in detail.

 Computer viruses have got a lot of publicity
 One of a family of malicious software
 Effects usually obvious
 Have figured in news reports, fiction, movies (often exaggerated)
 Getting more attention than deserve
 Are a concern though

Malicious software

Backdoor or trapdoor
 Secret entry point into a program
 Allows those who know access bypassing usual security procedures
 Have been commonly used by developers
 A threat when left in production programs allowing exploited by attackers
 Very hard to block in o/s
 Requires good s/w development & update

Logic bomb
 One of oldest types of malicious software
 Code embedded in legitimate program
 Activated when specified conditions met

 Eg presence/absence of some file
 Particular date/time
 Particular user

 When triggered typically damage system
 Modify/delete files/disks, halt machine, etc

Trojan horse
 Program with hidden side-effects
 Which is usually superficially attractive

 Eg game, s/w upgrade etc
 When run performs some additional tasks

 Allows attacker to indirectly gain access they do not have directly
 Often used to propagate a virus/worm or install a backdoor
 Or simply to destroy data

Zombie
 Program which secretly takes over another networked computer
 Then uses it to indirectly launch attacks
 Often used to launch distributed denial of service (ddos) attacks

 Exploits known flaws in network systems

Viruses
 A piece of self-replicating code attached to some other code

 Cf biological virus
 Both propagates itself & carries a payload

 Carries code to make copies of itself
 As well as code to perform some covert task

Virus operation
 Virus phases:

 Dormant – waiting on trigger event
 Propagation – replicating to programs/disks
 Triggering – by event to execute payload
 Execution – of payload

 Details usually machine/os specific
 Exploiting features/weaknesses

Virus structure
Program v :=

{goto main;
1234567;
subroutine infect-executable := {loop:

file := get-random-executable-file;
if (first-line-of-file = 1234567) then goto loop
else prepend v to file; }

subroutine do-damage := {whatever damage is to be done}
subroutine trigger-pulled := {return true if condition holds}
main: main-program := {infect-executable;

if trigger-pulled then do-damage;
goto next;}

next:
}

4. Briefly explain the types of virus

 Can classify on basis of how they attack
 Parasitic virus
 Memory-resident virus
 Boot sector virus
 Stealth
 Polymorphic virus
 Metamorphic virus

Macro virus

 Macro code attached to some data file
 Interpreted by program using file

 Eg word/excel macros
 Esp. Using auto command & command macros

 Code is now platform independent
 Is a major source of new viral infections
 Blur distinction between data and program files
 Classic trade-off: "ease of use" vs "security”
 Have improving security in word etc
 Are no longer dominant virus threat

Email virus

 Spread using email with attachment containing a macro virus
 Cf melissa

 Triggered when user opens attachment
 Or worse even when mail viewed by using scripting features in mail agent
 Hence propagate very quickly
 Usually targeted at microsoft outlook mail agent & word/excel documents
 Need better o/s & application security

Worms

 Replicating but not infecting program
 Typically spreads over a network

 Cf morris internet worm in 1988
 Led to creation of certs

 Using users distributed privileges or by exploiting system vulnerabilities
 Widely used by hackers to create zombie pc's, subsequently used for further

attacks, esp dos
 Major issue is lack of security of permanently connected systems, esp pc's

Worm operation

 Worm phases like those of viruses:
 Dormant
 Propagation

• Search for other systems to infect
• Establish connection to target remote system
• Replicate self onto remote system

 Triggering
 Execution

Morris worm

 Best known classic worm
 Released by robert morris in 1988
 Targeted unix systems
 Using several propagation techniques

 Simple password cracking of local pw file
 Exploit bug in finger daemon
 Exploit debug trapdoor in sendmail daemon

 If any attack succeeds then replicated self

Recent worm attacks

 New spate of attacks from mid-2001
 Code red - used ms iis bug

 Probes random ips for systems running iis
 Had trigger time for denial-of-service attack
 2nd wave infected 360000 servers in 14 hours

 Code red 2 - installed backdoor
 Nimda - multiple infection mechanisms
 Sql slammer - attacked ms sql server
 Sobig.f - attacked open proxy servers
 Mydoom - mass email worm + backdoor

Worm techology

 Multiplatform
 Multiexploit
 Ultrafast spreading
 Polymorphic
 Metamorphic
 Transport vehicles
 Zero-day exploit

VIRUS COUNTERMEASURES

 Best countermeasure is prevention
 But in general not possible
 Hence need to do one or more of:

 Detection - of viruses in infected system
 Identification - of specific infecting virus
 Removeal - restoring system to clean state

Anti-virus software
 First-generation

 Scanner uses virus signature to identify virus
 Or change in length of programs

 Second-generation
 Uses heuristic rules to spot viral infection
 Or uses crypto hash of program to spot changes

 Third-generation
 Memory-resident programs identify virus by actions

 Fourth-generation
 Packages with a variety of antivirus techniques
 Eg scanning & activity traps, access-controls

 Arms race continues

Advanced anti-virus techniques
 Generic decryption

 Use cpu simulator to check program signature & behavior before actually
running it

 Digital immune system (ibm)
 General purpose emulation & virus detection
 Any virus entering org is captured, analyzed, detection/shielding created

for it, removed

Digital immune system

Behavior-blocking software
 Integrated with host o/s
 Monitors program behavior in real-time

 Eg file access, disk format, executable mods, system settings changes,
network access

 For possibly malicious actions
 If detected can block, terminate, or seek ok

 Has advantage over scanners
 But malicious code runs before detection

Distributed denial of service attacks (DDOS)
 Distributed denial of service (ddos) attacks form a significant security threat
 Making networked systems unavailable
 By flooding with useless traffic
 Using large numbers of “zombies”
 Growing sophistication of attacks
 Defense technologies struggling to cope

Contructing the ddos attack network
 Must infect large number of zombies
 Needs:
1. Software to implement the ddos attack
2. An unpatched vulnerability on many systems
3. Scanning strategy to find vulnerable systems

 Random, hit-list, topological, local subnet

DDOS countermeasures

 Three broad lines of defense:
1. Attack prevention & preemption (before)
2. Attack detection & filtering (during)
3. Attack source traceback & ident (after)

 Huge range of attack possibilities
 Hence evolving countermeasures

5. Explain the technical details of firewall and describe any three types of firewall
with neat diagram .

Introduction
 Seen evolution of information systems
 Now everyone want to be on the internet
 And to interconnect networks
 Has persistent security concerns

 Can’t easily secure every system in org
 Typically use a firewall
 To provide perimeter defence
 As part of comprehensive security strategy

What is a firewall?
 A choke point of control and monitoring
 Interconnects networks with differing trust
 Imposes restrictions on network services

 Only authorized traffic is allowed
 Auditing and controlling access

 Can implement alarms for abnormal behavior
 Provide nat & usage monitoring
 Implement vpns using ipsec
 Must be immune to penetration

Firewall limitations
 Cannot protect from attacks bypassing it

 Eg sneaker net, utility modems, trusted organisations, trusted services (eg
ssl/ssh)

 Cannot protect against internal threats
 Eg disgruntled or colluding employees

 Cannot protect against transfer of all virus infected programs or files
 Because of huge range of o/s & file types

Firewalls – packet filters
 Simplest, fastest firewall component
 Foundation of any firewall system
 Examine each ip packet (no context) and permit or deny according to rules
 Hence restrict access to services (ports)
 Possible default policies

 That not expressly permitted is prohibited
 That not expressly prohibited is permitted

Attacks on packet filters
 Ip address spoofing

 Fake source address to be trusted
 Add filters on router to block

 Source routing attacks
 Attacker sets a route other than default
 Block source routed packets

 Tiny fragment attacks
 Split header info over several tiny packets
 Either discard or reassemble before check

Firewalls – stateful packet filters
 Traditional packet filters do not examine higher layer context

 Ie matching return packets with outgoing flow
 Stateful packet filters address this need
 They examine each ip packet in context

 Keep track of client-server sessions
 Check each packet validly belongs to one

 Hence are better able to detect bogus packets out of context

Firewalls - application level gateway (or proxy)
 Have application specific gateway / proxy
 Has full access to protocol

 User requests service from proxy
 Proxy validates request as legal
 Then actions request and returns result to user
 Can log / audit traffic at application level

 Need separate proxies for each service
 Some services naturally support proxying
 Others are more problematic

Firewalls - circuit level gateway
 Relays two tcp connections
 Imposes security by limiting which such connections are allowed
 Once created usually relays traffic without examining contents
 Typically used when trust internal users by allowing general outbound

connections
 Socks is commonly used

Firewalls - circuit level gateway

Bastion host
 Highly secure host system
 Runs circuit / application level gateways
 Or provides externally accessible services
 Potentially exposed to "hostile" elements
 Hence is secured to withstand this

 Hardened o/s, essential services, extra auth
 Proxies small, secure, independent, non-privileged

 May support 2 or more net connections
 May be trusted to enforce policy of trusted separation between these net

connections

Firewall configurations

Firewall configurations

Access control
 Given system has identified a user
 Determine what resources they can access
 General model is that of access matrix with

 Subject - active entity (user, process)
 Object - passive entity (file or resource)
 Access right – way object can be accessed

 Can decompose by
 Columns as access control lists
 Rows as capability tickets

Access control matrix

TRUSTED COMPUTER SYSTEMS
 Information security is increasingly important
 Have varying degrees of sensitivity of information

 Cf military info classifications: confidential, secret etc
 Subjects (people or programs) have varying rights of access to objects

(information)
 Known as multilevel security

 Subjects have maximum & current security level
 Objects have a fixed security level classification

 Want to consider ways of increasing confidence in systems to enforce these rights

Bell lapadula (blp) model
 One of the most famous security models
 Implemented as mandatory policies on system
 Has two key policies:
 No read up (simple security property)

 A subject can only read/write an object if the current security level of the
subject dominates (>=) the classification of the object

 No write down (*-property)
 A subject can only append/write to an object if the current security level of

the subject is dominated by (<=) the classification of the object

Reference monitor

Evaluated computer systems
 Governments can evaluate it systems
 Against a range of standards:

 Tcsec, ipsec and now common criteria
 Define a number of “levels” of evaluation with increasingly stringent checking
 Have published lists of evaluated products

 Though aimed at government/defense use
 Can be useful in industry also

Common criteria
 International initiative specifying security requirements & defining evaluation

criteria
 Incorporates earlier standards

 Eg csec, itsec, ctcpec (canadian), federal (us)
 Specifies standards for

 Evaluation criteria
 Methodology for application of criteria
 Administrative procedures for evaluation, certification and accreditation

schemes

 Defines set of security requirements
 Have a target of evaluation (toe)
 Requirements fall in two categories

 Functional
 Assurance

 Both organised in classes of families & components

Common criteria requirements
 Functional requirements

 Security audit, crypto support, communications, user data protection,
identification & authentication, security management, privacy, protection
of trusted security functions, resource utilization, toe access, trusted path

 Assurance requirements
 Configuration management, delivery & operation, development, guidance

documents, life cycle support, tests, vulnerability assessment, assurance
maintenance

Common criteria

1. Explain the OSI Architecture.

 OSI SECURITY ARCHITECTURE

· Itu-t x.800 “security architecture for osi”

· Defines a systematic way of defining and providing security requirements

· For us it provides a useful, if abstract, overview of concepts we will study

 Aspects of security

· Consider 3 aspects of information security:

· Security attack

· Security mechanism

· Security service

 Security attack

· Any action that compromises the security of information owned by an organization

· Information security is about how to prevent attacks, or failing that, to detect attacks on information-based systems

· Often threat & attack used to mean same thing

· Have a wide range of attacks

· Can focus of generic types of attacks

· Passive

· Active

[image: image1.png]

Active attacks

[image: image2.png]

 SECURITY SERVICE

· Enhance security of data processing systems and information transfers of an organization

· Intended to counter security attacks

· Using one or more security mechanisms

· Often replicates functions normally associated with physical documents

· Which, for example, have signatures, dates; need protection from disclosure, tampering, or destruction; be notarized or witnessed; be recorded or licensed

· X.800:

“a service provided by a protocol layer of communicating open systems, which ensures adequate security of the systems or of data transfers”

· Rfc 2828:

“a processing or communication service provided by a system to give a specific kind of protection to system resources”

· Authentication - assurance that the communicating entity is the one claimed

· Access control - prevention of the unauthorized use of a resource

· Data confidentiality –protection of data from unauthorized disclosure

· Data integrity - assurance that data received is as sent by an authorized entity

· Non-repudiation - protection against denial by one of the parties in a communication

MODEL FOR NETWORK SECURITY

[image: image3.png]

MODEL FOR NETWORK SECURITY

· Using this model requires us to:

1. Design a suitable algorithm for the security transformation

2. Generate the secret information (keys) used by the algorithm

3. Develop methods to distribute and share the secret information

4. Specify a protocol enabling the principals to use the transformation and secret information for a security service

SYMMETRIC ENCRYPTION

· Sender and recipient share a common key

· All classical encryption algorithms are private-key

· Was only type prior to invention of public-key in 1970’s

· And by far most widely used

SOME BASIC TERMINOLOGY

· Plaintext - original message

· Ciphertext - coded message

· Cipher - algorithm for transforming plaintext to ciphertext

· Key - info used in cipher known only to sender/receiver

· Encipher (encrypt) - converting plaintext to ciphertext

· Decipher (decrypt) - recovering ciphertext from plaintext

· Cryptography - study of encryption principles/methods

· Cryptanalysis (codebreaking) - study of principles/ methods of deciphering ciphertext without knowing key

· Cryptology - field of both cryptography and cryptanalysis

Symmetric cipher model

[image: image4.png]

Requirements

· Two requirements for secure use of symmetric encryption:

· A strong encryption algorithm

· A secret key known only to sender / receiver

· Mathematically have:

y = ek(x)

x = dk(y)

· Assume encryption algorithm is known

· Implies a secure channel to distribute key

CRYPTOGRAPHY

· Characterize cryptographic system by:

· Type of encryption operations used

· Substitution / transposition / product

· Number of keys used

· Single-key or private / two-key or public

· Way in which plaintext is processed

· Block / stream

CRYPTANALYSIS

· Objective to recover key not just message

· General approaches:

· Cryptanalytic attack

· Brute-force attack

CRYPTANALYTIC ATTACKS

· Ciphertext only

· Only know algorithm & ciphertext, is statistical, know or can identify plaintext

· Known plaintext

· Know/suspect plaintext & ciphertext

· Chosen plaintext

· Select plaintext and obtain ciphertext

· Chosen ciphertext

· Select ciphertext and obtain plaintext

· Chosen text

· Select plaintext or ciphertext to en/decrypt

· Unconditional security

· No matter how much computer power or time is available, the cipher cannot be broken since the ciphertext provides insufficient information to uniquely determine the corresponding plaintext

· Computational security

· Given limited computing resources (eg time needed for calculations is greater than age of universe), the cipher cannot be broken

BRUTE FORCE SEARCH

· Always possible to simply try every key

· Most basic attack, proportional to key size

· Assume either know / recognise plaintext

2. Explain Classical Encryption Techniques.

CLASSICAL SUBSTITUTION CIPHERS

· Where letters of plaintext are replaced by other letters or by numbers or symbols

· Or if plaintext is viewed as a sequence of bits, then substitution involves replacing plaintext bit patterns with ciphertext bit patterns

CAESAR CIPHER

· Earliest known substitution cipher

· By julius caesar

· First attested use in military affairs

· Replaces each letter by 3rd letter on

· Example:

Meet me after the toga party

Phhw ph diwhu wkh wrjd sduwb

· Can define transformation as:

A b c d e f g h i j k l m n o p q r s t u v w x y z

D e f g h i j k l m n o p q r s t u v w x y z a b c

· Mathematically give each letter a number

A b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

· Then have caesar cipher as:

C = e(p) = (p + k) mod (26)

P = d(c) = (c – k) mod (26)

CRYPTANALYSIS OF CAESAR CIPHER

· Only have 26 possible ciphers

· A maps to a,b,..z

· Could simply try each in turn

· A brute force search

· Given ciphertext, just try all shifts of letters

· Do need to recognize when have plaintext

· Eg. Break ciphertext "gcua vq dtgcm"

MONOALPHABETIC CIPHER

· Rather than just shifting the alphabet

· Could shuffle (jumble) the letters arbitrarily

· Each plaintext letter maps to a different random ciphertext letter

· Hence key is 26 letters long

Plain: abcdefghijklmnopqrstuvwxyz

Cipher: dkvqfibjwpescxhtmyauolrgzn

Plaintext: ifwewishtoreplaceletters

Ciphertext: wirfrwajuhyftsdvfsfuufya

LANGUAGE REDUNDANCY AND CRYPTANALYSIS

· Human languages are redundant

· Eg "th lrd s m shphrd shll nt wnt"

· Letters are not equally commonly used

· In english e is by far the most common letter

· Followed by t,r,n,i,o,a,s

· Other letters like z,j,k,q,x are fairly rare

· Have tables of single, double & triple letter frequencies for various languages

USE IN CRYPTANALYSIS

· Key concept - monoalphabetic substitution ciphers do not change relative letter frequencies

· Discovered by arabian scientists in 9th century

· Calculate letter frequencies for ciphertext

· Compare counts/plots against known values

· If caesar cipher look for common peaks/troughs

· Peaks at: a-e-i triple, no pair, rst triple

· Troughs at: jk, x-z

· For monoalphabetic must identify each letter

· Tables of common double/triple letters help

PLAYFAIR CIPHER

· Not even the large number of keys in a monoalphabetic cipher provides security

· One approach to improving security was to encrypt multiple letters

· The playfair cipher is an example

· Invented by charles wheatstone in 1854, but named after his friend baron playfair

ENCRYPTING AND DECRYPTING

· Plaintext is encrypted two letters at a time

1. If a pair is a repeated letter, insert filler like 'x’

2. If both letters fall in the same row, replace each with letter to right
(wrapping back to start from end)

3. If both letters fall in the same column, replace each with the letter below it (again wrapping to top from bottom)

4. Otherwise each letter is replaced by the letter in the same row and in the column of the other letter of the pair

POLYALPHABETIC CIPHERS

· POLYALPHABETIC SUBSTITUTION CIPHERS

· Improve security using multiple cipher alphabets

· Make cryptanalysis harder with more alphabets to guess and flatter frequency distribution

· Use a key to select which alphabet is used for each letter of the message

· Use each alphabet in turn

· Repeat from start after end of key is reached

VIGENÈRE CIPHER

· Simplest polyalphabetic substitution cipher

· Effectively multiple caesar ciphers

· Key is multiple letters long k = k1 k2 ... Kd

· Ith letter specifies ith alphabet to use

· Use each alphabet in turn

· Repeat from start after d letters in message

· Decryption simply works in reverse

EXAMPLE OF VIGENÈRE CIPHER

· Write the plaintext out

· Write the keyword repeated above it

· Use each key letter as a caesar cipher key

· Encrypt the corresponding plaintext letter

· Eg using keyword deceptive

Key: deceptivedeceptivedeceptive

Plaintext: wearediscoveredsaveyourself

Ciphertext:zicvtwqngrzgvtwavzhcqyglmgj

AUTOKEY CIPHER

· Ideally want a key as long as the message

· Vigenère proposed the autokey cipher

· With keyword is prefixed to message as key

· Knowing keyword can recover the first few letters

· Use these in turn on the rest of the message

· But still have frequency characteristics to attack

· Eg. Given key deceptive

Key: deceptivewearediscoveredsav

Plaintext: wearediscoveredsaveyourself

Ciphertext:zicvtwqngkzeiigasxstslvvwla

ONE-TIME PAD

· If a truly random key as long as the message is used, the cipher will be secure

· Called a one-time pad

· Is unbreakable since cipher text bears no statistical relationship to the plaintext

· Since for any plaintext & any cipher text there exists a key mapping one to other

· Can only use the key once though

· Problems in generation & safe distribution of key

TRANSPOSITION CIPHERS

· Now consider classical transposition or permutation ciphers

· These hide the message by rearranging the letter order

· Without altering the actual letters used

· Can recognise these since have the same frequency distribution as the original text

RAIL FENCE CIPHER

· Write message letters out diagonally over a number of rows

· Then read off cipher row by row

· Eg. Write message out as:

M e m a t r h t g p r y

 e t e f e t e o a a t

· Giving ciphertext

Mematrhtgpryetefeteoaat

ROW TRANSPOSITION CIPHERS

· A more complex transposition

· Write letters of message out in rows over a specified number of columns

· Then reorder the columns according to some key before reading off the rows

Key: 4 3 1 2 5 6 7

Plaintext: a t t a c k p

 o s t p o n e

 d u n t i l t

 w o a m x y z

Ciphertext: ttnaaptmtsuoaodwcoixknlypetz

STEGANOGRAPHY

· An alternative to encryption

· Hides existence of message

· Using only a subset of letters/words in a longer message marked in some way

· Using invisible ink

· Hiding in lsb in graphic image or sound file

· Has drawbacks

· High overhead to hide relatively few info bits

MODERN BLOCK CIPHERS

· Now look at modern block ciphers

· One of the most widely used types of cryptographic algorithms

· Provide secrecy /authentication services

· Focus on des (data encryption standard)

· To illustrate block cipher design principles

BLOCK VS STREAM CIPHERS

· Block ciphers process messages in blocks, each of which is then en/decrypted

· Like a substitution on very big characters

· 64-bits or more

· Stream ciphers process messages a bit or byte at a time when en/decrypting

· Many current ciphers are block ciphers

· Broader range of applications

3. Briefly explain design principles of block cipher

1.3 BLOCK CIPHER PRINCIPLES

· Most symmetric block ciphers are based on a feistel cipher structure

· Needed since must be able to decrypt ciphertext to recover messages efficiently

· Block ciphers look like an extremely large substitution

· Would need table of 264 entries for a 64-bit block

· Instead create from smaller building blocks

· Using idea of a product cipher

CLAUDE SHANNON AND SUBSTITUTION-PERMUTATION CIPHERS

· Claude shannon introduced idea of substitution-permutation (s-p) networks in 1949 paper

· Form basis of modern block ciphers

· S-p nets are based on the two primitive cryptographic operations seen before:

· Substitution (s-box)

· Permutation (p-box)

· Provide confusion & diffusion of message & key

CONFUSION AND DIFFUSION

· Cipher needs to completely obscure statistical properties of original message

· A one-time pad does this

· More practically shannon suggested combining s & p elements to obtain:

· Diffusion – dissipate statistical structure of plaintext over bulk of ciphertext

· Confusion – makes relationship between ciphertext and key as complex as possible

FEISTEL CIPHER STRUCTURE

· Horst feistel devised the feistel cipher

· Based on concept of invertible product cipher

· Partitions input block into two halves

· Process through multiple rounds which

· Perform a substitution on left data half

· Based on round function of right half & subkey

· Then have permutation swapping halves

· Implements shannon’s s-p net concept

 [image: image5.png]

FEISTEL CIPHER DESIGN ELEMENTS

· Block size

· Key size

· Number of rounds

· Subkey generation algorithm

· Round function

· Fast software en/decryption

· Ease of analysis

FEISTEL CIPHER DECRYPTION

[image: image6.png]

4. Describe the working principle of DES with an example.

DATA ENCRYPTION STANDARD (DES)

· Most widely used block cipher in world

· Adopted in 1977 by nbs (now nist)

· As fips pub 46

· Encrypts 64-bit data using 56-bit key

· Has widespread use

· Has been considerable controversy over its security

DES DESIGN CONTROVERSY

· Although des standard is public

· Was considerable controversy over design

· In choice of 56-bit key (vs lucifer 128-bit)

· And because design criteria were classified

· Subsequent events and public analysis show in fact design was appropriate

· Use of des has flourished

· Especially in financial applications

· Still standardised for legacy application use

DES ENCRYPTION OVERVIEW

[image: image7.png]

INITIAL PERMUTATION IP

· First step of the data computation

· Ip reorders the input data bits

· Even bits to lh half, odd bits to rh half

· Quite regular in structure (easy in h/w)

· Example:

ip(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)

Des round structure

· Uses two 32-bit l & r halves

· As for any feistel cipher can describe as:

Li = ri–1

Ri = li–1 (f(ri–1, ki)

· F takes 32-bit r half and 48-bit subkey:

· Expands r to 48-bits using perm e

· Adds to subkey using xor

· Passes through 8 s-boxes to get 32-bit result

· Finally permutes using 32-bit perm p

[image: image8.png]

SUBSTITUTION BOXES S

· Have eight s-boxes which map 6 to 4 bits

· Each s-box is actually 4 little 4 bit boxes

· Outer bits 1 & 6 (row bits) select one row of 4

· Inner bits 2-5 (col bits) are substituted

· Result is 8 lots of 4 bits, or 32 bits

· Row selection depends on both data & key

· Feature known as autoclaving (autokeying)

· Example:

· S(18 09 12 3d 11 17 38 39) = 5fd25e03

DES KEY SCHEDULE

· Forms subkeys used in each round

· Initial permutation of the key (pc1) which selects 56-bits in two 28-bit halves

· 16 stages consisting of:

· Rotating each half separately either 1 or 2 places depending on the key rotation schedule k

· Selecting 24-bits from each half & permuting them by pc2 for use in round function f

· Note practical use issues in h/w vs s/w

DES DECRYPTION

· Decrypt must unwind steps of data computation

· With feistel design, do encryption steps again using subkeys in reverse order (sk16 … sk1)

· Ip undoes final fp step of encryption

· 1st round with sk16 undoes 16th encrypt round

· ….

· 16th round with sk1 undoes 1st encrypt round

· Then final fp undoes initial encryption ip

· Thus recovering original data value

AVALANCHE EFFECT

· Key desirable property of encryption alg

· Where a change of one input or key bit results in changing approx half output bits

· Making attempts to “home-in” by guessing keys impossible

· Des exhibits strong avalanche

STRENGTH OF DES – KEY SIZE

· 56-bit keys have 256 = 7.2 x 1016 values

· Brute force search looks hard

· Recent advances have shown is possible

· In 1997 on internet in a few months

· In 1998 on dedicated h/w (eff) in a few days

· In 1999 above combined in 22hrs!

· Still must be able to recognize plaintext

· Must now consider alternatives to des

STRENGTH OF DES – ANALYTIC ATTACKS

· Now have several analytic attacks on des

· These utilise some deep structure of the cipher

· By gathering information about encryptions

· Can eventually recover some/all of the sub-key bits

· If necessary then exhaustively search for the rest

· Generally these are statistical attacks

· Include

· Differential cryptanalysis

· Linear cryptanalysis

· Related key attacks

STRENGTH OF DES – TIMING ATTACKS

· Attacks actual implementation of cipher

· Use knowledge of consequences of implementation to derive information about some/all subkey bits

· Specifically use fact that calculations can take varying times depending on the value of the inputs to it

· Particularly problematic on smartcards

DIFFERENTIAL CRYPTANALYSIS

· One of the most significant recent (public) advances in cryptanalysis

· Known by nsa in 70's cf des design

· Murphy, biham & shamir published in 90’s

· Powerful method to analyse block ciphers

· Used to analyse most current block ciphers with varying degrees of success

· Des reasonably resistant to it, cf lucifer

[image: image9.png]

· Perform attack by repeatedly encrypting plaintext pairs with known input xor until obtain desired output xor

· When found

· If intermediate rounds match required xor have a right pair

· If not then have a wrong pair, relative ratio is s/n for attack

· Can then deduce keys values for the rounds

· Right pairs suggest same key bits

· Wrong pairs give random values

· For large numbers of rounds, probability is so low that more pairs are required than exist with 64-bit inputs

· Biham and shamir have shown how a 13-round iterated characteristic can break the full 16-round des

LINEAR CRYPTANALYSIS

· Another recent development

· Also a statistical method

· Must be iterated over rounds, with decreasing probabilities

· Developed by matsui et al in early 90's

· Based on finding linear approximations

· Can attack des with 243 known plaintexts, easier but still in practise infeasible

· Find linear approximations with prob p != ½

P[i1,i2,...,ia] (c[j1,j2,...,jb] = k[k1,k2,...,kc]

Where ia,jb,kc are bit locations in p,c,k

· Gives linear equation for key bits

· Get one key bit using max likelihood alg

· Using a large number of trial encryptions

· Effectiveness given by: |p–1/2|

5. Explain in detail the transformations take place in AES encryption procedure

ADVANCED ENCRYPTION STANDARD

Origins

· Clear a replacement for des was needed

· Have theoretical attacks that can break it

· Have demonstrated exhaustive key search attacks

· Can use triple-des – but slow with small blocks

· Us nist issued call for ciphers in 1997.

· 15 candidates accepted in jun 98.

· 5 were short listed in aug-99.

· Rijndael was selected as the aes in oct-2000.

· Issued as fips pub 197 standard in nov-2001.

Aes Evaluation Criteria

· Initial criteria:

· Security – effort to practically cryptanalysis

· Cost – computational

· Algorithm & implementation characteristics

· Final criteria:

· General security

· Software & hardware implementation ease

· Implementation attacks

· Flexibility (in en/decrypt, keying, other factors)

The Aes Cipher - Rijndael

· Designed by rijmen-daemen in belgium

· Has 128/192/256 bit keys, 128 bit data

· An iterative rather than feistel cipher

· Treats data in 4 groups of 4 bytes

· Operates an entire block in every round

· Designed to be:

· Resistant against known attacks

· Speed and code compactness on many cpus

· Design simplicity

Rijndael

· Processes data as 4 groups of 4 bytes (state)

· Has 9/11/13 rounds in which state undergoes:

· Byte substitution (1 s-box used on every byte)

· Shift rows (permute bytes between groups/columns)

· Mix columns (subs using matrix multiply of groups)

· Add round key (xor state with key material)

· Initial xor key material & incomplete last round

· All operations can be combined into xor and table lookups - hence very fast & efficient

[image: image10.png]

Byte Substitution

· A simple substitution of each byte

· Uses one table of 16x16 bytes containing a permutation of all 256 8-bit values

· Each byte of state is replaced by byte in row (left 4-bits) & column (right 4-bits)

· Eg. Byte {95} is replaced by row 9 col 5 byte

· Which is the value {2a}

· S-box is constructed using a defined transformation of the values in gf(28)

· Designed to be resistant to all known attacks

Shift rows

· Circular byte shift in each

· 1st row is unchanged

· 2nd row does 1 byte circular shift to left

· 3rd row does 2 byte circular shift to left

· 4th row does 3 byte circular shift to left

· Decrypt does shifts to right

· Since state is processed by columns, this step permutes bytes between the columns

[image: image11.png]mix columns

· Each column is processed separately

· Each byte is replaced by a value dependent on all 4 bytes in the column

· Effectively a matrix multiplication in gf(28) using prime poly m(x) =x8+x4+x3+x+1

[image: image12.png]

Add round key

· Xor state with 128-bits of the round key

· Again processed by column (though effectively a series of byte operations)

· Inverse for decryption is identical since xor is own inverse, just with correct round key

· Designed to be as simple as possible

[image: image13.png]

Aes decryption

· Aes decryption is not identical to encryption since steps done in reverse

· But can define an equivalent inverse cipher with steps as for encryption

· But using inverses of each step

· With a different key schedule

· Works since result is unchanged when

· Swap byte substitution & shift rows

· Swap mix columns & add (tweaked) round key

Implementation aspects

· Can efficiently implement on 8-bit cpu

· Byte substitution works on bytes using a table of 256 entries

· Shift rows is simple byte shifting

· Add round key works on byte xors

· Mix columns requires matrix multiply in gf(28) which works on byte values, can be simplified to use a table lookup

· Can efficiently implement on 32-bit cpu

· Redefine steps to use 32-bit words

· Can precompute 4 tables of 256-words

· Then each column in each round can be computed using 4 table lookups + 4 xors

· At a cost of 16kb to store tables

· Designers believe this very efficient implementation was a key factor in its selection as the aes cipher

TRIPLE DES

· Clear a replacement for des was needed

· Theoretical attacks that can break it

· Demonstrated exhaustive key search attacks

· Aes is a new cipher alternative

· Prior to this alternative was to use multiple encryption with des implementations

· Triple-des is the chosen form

Triple-des with two-keys

· Hence must use 3 encryptions

· Would seem to need 3 distinct keys

· But can use 2 keys with e-d-e sequence

· C = ek1[dk2[ek1[p]]]

· Nb encrypt & decrypt equivalent in security

· If k1=k2 then can work with single des

· Standardized in ansi x9.17 & iso8732

· No current known practical attacks

Triple-des with three-keys

· Although are no practical attacks on two-key triple-des have some indications

· Can use triple-des with three-keys to avoid even these

· C = ek3[dk2[ek1[p]]]

· Has been adopted by some internet applications, eg pgp, s/mime

Blowfish

· A symmetric block cipher designed by bruce schneier in 1993/94

· Characteristics

· Fast implementation on 32-bit cpus

· Compact in use of memory

· Simple structure eases analysis/implemention

· Variable security by varying key size

· Has been implemented in various products

· Uses a 32 to 448 bit key

· Used to generate

· 18 32-bit subkeys stored in k-array kj

· Four 8x32 s-boxes stored in si,j

· Key schedule consists of:

· Initialize p-array and then 4 s-boxes using pi

· Xor p-array with key bits (reuse as needed)

· Loop repeatedly encrypting data using current p & s and replace successive pairs of p then s values

· Requires 521 encryptions, hence slow in rekeying

Blowfish encryption

· Uses two primitives: addition & xor

· Data is divided into two 32-bit halves l0 & r0

For i = 1 to 16 do

Ri = li-1 xor pi;

Li = f[ri] xor ri-1;

L17 = r16 xor p18;

R17 = l16 xor i17;

· Where

F[a,b,c,d] = ((s1,a + s2,b) xor s3,c) + s4,a

Rc5

· A proprietary cipher owned by rsadsi

· Designed by ronald rivest (of rsa fame)

· Used in various rsadsi products

· Can vary key size / data size / no rounds

· Very clean and simple design

· Easy implementation on various cpus

· Yet still regarded as secure

· Rc5 is a family of ciphers rc5-w/r/b

· W = word size in bits (16/32/64) nb data=2w

· R = number of rounds (0..255)

· B = number of bytes in key (0..255)

· Nominal version is rc5-32/12/16

· Ie 32-bit words so encrypts 64-bit data blocks

· Using 12 rounds

· With 16 bytes (128-bit) secret key

Rc5 encryption

· Split input into two halves a & b

L0 = a + s[0];

R0 = b + s[1];

For i = 1 to r do

Li = ((li-1 xor ri-1) <<< ri-1) + s[2 x i];

Ri = ((ri-1 xor li) <<< li) + s[2 x i + 1];

· Each round is like 2 des rounds

· Note rotation is main source of non-linearity

· Need reasonable number of rounds (eg 12-16)

Block cipher characteristics

· Features seen in modern block ciphers are:

· Variable key length / block size / no rounds

· Mixed operators, data/key dependent rotation

· Key dependent s-boxes

· More complex key scheduling

· Operation of full data in each round

· Varying non-linear functions

Stream ciphers

· Process the message bit by bit (as a stream)

· Typically have a (pseudo) random stream key

· Combined (xor) with plaintext bit by bit

· Randomness of stream key completely destroys any statistically properties in the message

· Ci = mi xor streamkeyi

· What could be simpler!!!!

· But must never reuse stream key

· Otherwise can remove effect and recover messages

Rc4

· A proprietary cipher owned by rsa dsi

· Another ron rivest design, simple but effective

· Variable key size, byte-oriented stream cipher

· Widely used (web ssl/tls, wireless wep)

· Key forms random permutation of all 8-bit values

· Uses that permutation to scramble input info processed a byte at a time

Rc4 key schedule

· Starts with an array s of numbers: 0..255

· Use key to well and truly shuffle

· S forms internal state of the cipher

· Given a key k of length l bytes

For i = 0 to 255 do

S[i] = i

J = 0

For i = 0 to 255 do

J = (j + s[i] + k[i mod l]) (mod 256)

Swap (s[i], s[j])

Rc4 encryption

· Encryption continues shuffling array values

· Sum of shuffled pair selects "stream key" value

· Txor with next byte of message to en/decrypt

I = j = 0

For each message byte mi

I = (i + 1) (mod 256)

J = (j + s[i]) (mod 256)

Swap(s[i], s[j])

T = (s[i] + s[j]) (mod 256)

Ci = mi xor s[t]

Rc4 security

· Claimed secure against known attacks

· Have some analyses, none practical

· Result is very non-linear

· Since rc4 is a stream cipher, must never reuse a key

· Have a concern with wep, but due to key handling rather than rc4 itself

UNIT II

 BLOCK CIPHERS & PUBLIC KEY CRYPTOGRAPHY

1. Describe Euler’s and Fermat’s theorem.

Fermat's theorem

· Fermat's little theorem (not to be confused with fermat's last theorem) states that if p is a prime number, then for any integer a, ap − a will be evenly divisible by p. This can be expressed in the notation of modular arithmetic as follows:

· A variant of this theorem is stated in the following form: if p is a prime and a is an integer coprime to p, then ap − 1 − 1 will be evenly divisible by p. In the notation of modular arithmetic:

· Ap-1 = 1 (mod p)

· Where p is prime and gcd(a,p)=1

· Also known as fermat’s little theorem

· Also ap = p (mod p)

· Useful in public key and primality testing

Euler totient function ø(n)

· When doing arithmetic modulo n

· Complete set of residues is: 0..n-1

· Reduced set of residues is those numbers (residues) which are relatively prime to n

· Eg for n=10,

· Complete set of residues is {0,1,2,3,4,5,6,7,8,9}

· Reduced set of residues is {1,3,7,9}

· Number of elements in reduced set of residues is called the euler totient function ø(n)

· To compute ø(n) need to count number of residues to be excluded

· In general need prime factorization, but

· For p (p prime)
 ø(p) = p-1

· For p.q (p,q prime)
 ø(pq) =(p-1)x(q-1)

· Eg.

Ø(37) = 36

Ø(21) = (3–1)x(7–1) = 2x6 = 12

Euler's theorem

· A generalisation of fermat's theorem

· Aø(n) = 1 (mod n)

· For any a,n where gcd(a,n)=1

· Eg.

A=3;n=10; ø(10)=4;

hence 34 = 81 = 1 mod 10

A=2;n=11; ø(11)=10;

hence 210 = 1024 = 1 mod 11

Miller rabin algorithm

· A test based on fermat’s theorem

· Algorithm is:

Test (n) is:

1. Find integers k, q, k > 0, q odd, so that (n–1)=2kq

2. Select a random integer a, 1<a<n–1

3. If aq mod n = 1 then return (“maybe prime");

4. For j = 0 to k – 1 do

5. If (a2jq mod n = n-1)

 then return(" maybe prime ")

6. Return ("composite")

Prime distribution

· Prime number theorem states that primes occur roughly every (ln n) integers

· But can immediately ignore evens

· So in practice need only test 0.5 ln(n) numbers of size n to locate a prime

· Note this is only the “average”

· Sometimes primes are close together

· Other times are quite far apart

Discrete logarithms

· The inverse problem to exponentiation is to find the discrete logarithm of a number modulo p

· That is to find x such that y = gx (mod p)

· This is written as x = logg y (mod p)

· If g is a primitive root then it always exists, otherwise it may not, eg.

X = log3 4 mod 13 has no answer

X = log2 3 mod 13 = 4 by trying successive powers

· Whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

2. Describe Public Key Cryptography.

Private key

· Traditional private/secret/single key cryptography uses one key

· Shared by both sender and receiver

· If this key is disclosed communications are compromised

· Also is symmetric, parties are equal

· Hence does not protect sender from receiver forging a message & claiming is sent by sender

· Probably most significant advance in the 3000 year history of cryptography

· Uses two keys – a public & a private key

· Asymmetric since parties are not equal

· Uses clever application of number theoretic concepts to function

· Complements rather than replaces private key crypto

· Developed to address two key issues:

· Key distribution – how to have secure communications in general without having to trust a kdc with your key

· Digital signatures – how to verify a message comes intact from the claimed sender

· Public invention due to whitfield diffie & martin hellman at stanford uni in 1976

· Known earlier in classified community

· Public-key/two-key/asymmetric cryptography involves the use of two keys:

· A public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures

· A private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures

· Is asymmetric because

· Those who encrypt messages or verify signatures cannot decrypt messages or create signatures

[image: image14.png]

Public-key characteristics

· Public-key algorithms rely on two keys where:

· It is computationally infeasible to find decryption key knowing only algorithm & encryption key

· It is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known

· Either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)

[image: image15.png]

Public-key applications

· Can classify uses into 3 categories:

· Encryption/decryption (provide secrecy)

· Digital signatures (provide authentication)

· Key exchange (of session keys)

· Some algorithms are suitable for all uses, others are specific to one

3. Explain RSA method in detail.

RSA

· By rivest, shamir & adleman of mit in 1977

· Best known & widely used public-key scheme

· Based on exponentiation in a finite (galois) field over integers modulo a prime

· Nb. Exponentiation takes o((log n)3) operations (easy)

· Uses large integers (eg. 1024 bits)

· Security due to cost of factoring large numbers

· Nb. Factorization takes o(e log n log log n) operations (hard)

RSA key setup

· Each user generates a public/private key pair by:

· Selecting two large primes at random - p, q

· Computing their system modulus n=p.q

· Note ø(n)=(p-1)(q-1)

· Selecting at random the encryption key e

· Where 1<e<ø(n), gcd(e,ø(n))=1

· Solve following equation to find decryption key d

· E.d=1 mod ø(n) and 0≤d≤n

· Publish their public encryption key: pu={e,n}

· Keep secret private decryption key: pr={d,n}

RSA works

· Because of euler's theorem:

· Aø(n)mod n = 1 where gcd(a,n)=1

· In rsa have:

· N=p.q

· Ø(n)=(p-1)(q-1)

· Carefully chose e & d to be inverses mod ø(n)

· Hence e.d=1+k.ø(n) for some k

· Hence :

cd = me.d = m1+k.ø(n) = m1.(mø(n))k

 = m1.(1)k = m1 = m mod n

RSA example - key setup

1. Select primes: p=17 & q=11

2. Compute n = pq =17 x 11=187

3. Compute ø(n)=(p–1)(q-1)=16 x 10=160

4. Select e: gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 160 value is d=23 since 23x7=161= 10x160+1

6. Publish public key pu={7,187}

7. Keep secret private key pr={23,187}

RSA example - en/decryption

· Sample RSA encryption/decryption is:

· Given message m = 88 (nb. 88<187)

· Encryption:

C = 887 mod 187 = 11

· Decryption:

M = 1123 mod 187 = 88

RSA security

· Possible approaches to attacking rsa are:

· Brute force key search (infeasible given size of numbers)

· Mathematical attacks (based on difficulty of computing ø(n), by factoring modulus n)

· Timing attacks (on running of decryption)

· Chosen ciphertext attacks (given properties of rsa)

Factoring problem

· Mathematical approach takes 3 forms:

· Factor n=p.q, hence compute ø(n) and then d

· Determine ø(n) directly and compute d

· Find d directly

· Currently believe all equivalent to factoring

· Have seen slow improvements over the years

· As of may-05 best is 200 decimal digits (663) bit with ls

· Biggest improvement comes from improved algorithm

· Cf qs to ghfs to ls

· Currently assume 1024-2048 bit rsa is secure

· Ensure p, q of similar size and matching other constraints

4. Describe public key management and cryptosystems

Key management

· Public-key encryption helps address key distribution problems

· Have two aspects of this:

· Distribution of public keys

· Use of public-key encryption to distribute secret keys

Distribution of public keys

· Can be considered as using one of:

· Public announcement

· Publicly available directory

· Public-key authority

· Public-key certificates

Public announcement

· Users distribute public keys to recipients or broadcast to community at large

· Eg. Append pgp keys to email messages or post to news groups or email list

· Major weakness is forgery

· Anyone can create a key claiming to be someone else and broadcast it

· Until forgery is discovered can masquerade as claimed user

Publicly available directory

· Can obtain greater security by registering keys with a public directory

· Directory must be trusted with properties:

· Contains {name, public-key} entries

· Participants register securely with directory

· Participants can replace key at any time

· Directory is periodically published

· Directory can be accessed electronically

· Still vulnerable to tampering or forgery

Public-key authority

· Improve security by tightening control over distribution of keys from directory.

· Has properties of directory.

· And requires users to know public key for the directory.

· Then users interact with directory to obtain any desired public key securely.

· Does require real-time access to directory when keys are needed

[image: image16.png]

Public-key certificates

· Certificates allow key exchange without real-time access to public-key authority.

· A certificate binds identity to public key

· Usually with other info such as period of validity, rights of use etc.

· With all contents signed by a trusted public-key or certificate authority (ca).

· Can be verified by anyone who knows the public-key authorities public-key.

[image: image17.png]

Public-key distribution of secret keys

· Use previous methods to obtain public-key

· Can use for secrecy or authentication

· But public-key algorithms are slow

· So usually want to use private-key encryption to protect message contents

· Hence need a session key

· Have several alternatives for negotiating a suitable session

Public-key distribution of secret keys

· If have securely exchanged public-keys:

[image: image18.png]

Hybrid key distribution

· Retain use of private-key kdc

· Shares secret master key with each user

· Distributes session key using master key

· Public-key used to distribute master keys

· Especially useful with widely distributed users

· Rationale

· Performance

· Backward compatibility

4. Briefly explain the Diffie-Hellman Key Exchange

DIFFIE-HELLMAN KEY EXCHANGE

· First public-key type scheme proposed

· By diffie & hellman in 1976 along with the exposition of public key concepts

· Note: now know that williamson (uk cesg) secretly proposed the concept in 1970

· Is a practical method for public exchange of a secret key

· Used in a number of commercial products

· A public-key distribution scheme

· Cannot be used to exchange an arbitrary message

· Rather it can establish a common key

· Known only to the two participants

· Value of key depends on the participants (and their private and public key information)

· Based on exponentiation in a finite (galois) field (modulo a prime or a polynomial) - easy

· Security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-hellman setup

· All users agree on global parameters:

· Large prime integer or polynomial q

· A being a primitive root mod q

· Each user (eg. A) generates their key

· Chooses a secret key (number): xa < q

· Compute their public key: ya = axa mod q

· each user makes public that key ya

Diffie-hellman key exchange

· Shared session key for users a & b is kab:

Kab = axa.xb mod q

= yaxb mod q (which b can compute)

= ybxa mod q (which a can compute)

· Kab is used as session key in private-key encryption scheme between alice and bob

· If alice and bob subsequently communicate, they will have the same key as before, unless they choose new public-keys

· Attacker needs an x, must solve discrete log

Diffie-hellman example

· Users alice & bob who wish to swap keys:

· Agree on prime q=353 and a=3

· Select random secret keys:

· A chooses xa=97, b chooses xb=233

· Compute respective public keys:

· Ya=397 mod 353 = 40
(alice)

· Yb=3233 mod 353 = 248
(bob)

· Compute shared session key as:

· Kab= ybxa mod 353 = 24897 = 160
(alice)

· Kab= yaxb mod 353 = 40233 = 160
(bob)

Key exchange protocols

· Users could create random private/public d-h keys each time they communicate

· Users could create a known private/public d-h key and publish in a directory, then consulted and used to securely communicate with them

· Both of these are vulnerable to a meet-in-the-middle attack

· Authentication of the keys is needed

5. Briefly describe the idea behind Elliptic Curve Cryptosystems.

· Majority of public-key crypto (rsa, d-h) use either integer or polynomial arithmetic with very large numbers/polynomials

· Imposes a significant load in storing and processing keys and messages

· An alternative is to use elliptic curves

· Offers same security with smaller bit sizes

· Newer, but not as well analysed

Real elliptic curves

· An elliptic curve is defined by an equation in two variables x & y, with coefficients

· Consider a cubic elliptic curve of form

· Y2 = x3 + ax + b

· Where x,y,a,b are all real numbers

· Also define zero point o

· Have addition operation for elliptic curve

· Geometrically sum of q+r is reflection of intersection r

Real elliptic curve example

[image: image19.png]

Finite elliptic curves

· Elliptic curve cryptography uses curves whose variables & coefficients are finite

· Have two families commonly used:

· Prime curves ep(a,b) defined over zp

· Use integers modulo a prime

· Best in software

· Binary curves e2m(a,b) defined over gf(2n)

· Use polynomials with binary coefficients

· Best in hardware

Elliptic curve cryptography

· Ecc addition is analog of modulo multiply

· Ecc repeated addition is analog of modulo exponentiation

· Need “hard” problem equiv to discrete log

· Q=kp, where q,p belong to a prime curve

· Is “easy” to compute q given k,p

· But “hard” to find k given q,p

· Known as the elliptic curve logarithm problem

· Certicom example: e23(9,17)

Ecc diffie-hellman

· Can do key exchange analogous to d-h

· Users select a suitable curve ep(a,b)

· Select base point g=(x1,y1)

· With large order n s.t. Ng=o

· A & b select private keys na<n, nb<n

· Compute public keys: pa=nag, pb=nbg

· Compute shared key: k=napb, k=nbpa

· Same since k=nanbg

Ecc encryption/decryption

· Several alternatives, will consider simplest

· Must first encode any message m as a point on the elliptic curve pm

· Select suitable curve & point g as in d-h

· Each user chooses private key na<n

· And computes public key pa=nag

· To encrypt pm : cm={kg, pm+kpb}, k random

· Decrypt cm compute:

Pm+kpb–nb(kg) = pm+k(nbg)–nb(kg) = pm

Ecc security

· Relies on elliptic curve logarithm problem

· Fastest method is “pollard rho method”

· Compared to factoring, can use much smaller key sizes than with rsa etc

· For equivalent key lengths computations are roughly equivalent

· Hence for similar security ecc offers significant computational advantages

UNIT III

 HASH FUNCTIONS AND DIGITAL SIGNATURES

1. Give a brief notes on message authentications and services.

Message authentication

· Message authentication is concerned with:

· Protecting the integrity of a message

· Validating identity of originator

· Non-repudiation of origin (dispute resolution)

· Will consider the security requirements

· Then three alternative functions used:

· Message encryption

· Message authentication code (mac)

· Hash function

Security requirements

· Disclosure

· Traffic analysis

· Masquerade

· Content modification

· Sequence modification

· Timing modification

· Source repudiation

· Destination repudiation

Message encryption

· Message encryption by itself also provides a measure of authentication

· If symmetric encryption is used then:

· Receiver know sender must have created it

· Since only sender and receiver now key used

· Know content cannot of been altered

· If message has suitable structure, redundancy or a checksum to detect any changes

· If public-key encryption is used:

· Encryption provides no confidence of sender

· Since anyone potentially knows public-key

· However if

· Sender signs message using their private-key

· Then encrypts with recipients public key

· Have both secrecy and authentication

· Again need to recognize corrupted messages

· But at cost of two public-key uses on message

2. Briefly describe about MAC in detail.

MESSAGE AUTHENTICATION CODE (MAC)

· Generated by an algorithm that creates a small fixed-sized block

· Depending on both message and some key

· Like encryption though need not be reversible

· Appended to message as a signature

· Receiver performs same computation on message and checks it matches the mac

· Provides assurance that message is unaltered and comes from sender

Message authentication code

[image: image20.png]

· As shown the mac provides authentication

· Can also use encryption for secrecy

· Generally use separate keys for each

· Can compute mac either before or after encryption

· Is generally regarded as better done before

· Why use a mac?

· Sometimes only authentication is needed

· Sometimes need authentication to persist longer than the encryption (eg. Archival use)

· Note that a mac is not a digital signature

MAC properties

· A mac is a cryptographic checksum

mac = ck(m)

· Condenses a variable-length message m

· Using a secret key k

· To a fixed-sized authenticator

· Is a many-to-one function

· Potentially many messages have same mac

· But finding these needs to be very difficult

Requirements for MACS

· Taking into account the types of attacks

· Need the mac to satisfy the following:

1. Knowing a message and mac, is infeasible to find another message with same mac

2. Macs should be uniformly distributed

3. Mac should depend equally on all bits of the message

Using symmetric ciphers for macs

· Can use any block cipher chaining mode and use final block as a mac

· Data authentication algorithm (daa) is a widely used mac based on des-cbc

· Using iv=0 and zero-pad of final block

· Encrypt message using des in cbc mode

· And send just the final block as the mac

· Or the leftmost m bits (16≤m≤64) of final block

· But final mac is now too small for security

Data authentication algorithm

[image: image21.png]

3. Write about the security hash functions in detail.

· Condenses arbitrary message to fixed size

H = h(m)

· Usually assume that the hash function is public and not keyed

· Cf. Mac which is keyed

· Hash used to detect changes to message

· Can use in various ways with message

· Most often to create a digital signature

Hash functions & digital signatures

[image: image22.png]

Requirements for hash functions

1. Can be applied to any sized message m

2. Produces fixed-length output h

3. Is easy to compute h=h(m) for any message m

4. Given h is infeasible to find x s.t. H(x)=h

· One-way property

5. Given x is infeasible to find y s.t. H(y)=h(x)

· Weak collision resistance

6. Is infeasible to find any x,y s.t. H(y)=h(x)

· Strong collision resistance

Simple hash functions

· Are several proposals for simple functions

· Based on xor of message blocks

· Not secure since can manipulate any message and either not change hash or change hash also

· Need a stronger cryptographic function (next chapter)

Birthday attacks

· Might think a 64-bit hash is secure

· But by birthday paradox is not

· Birthday attack works thus:

· Opponent generates 2m/2 variations of a valid message all with essentially the same meaning

· Opponent also generates 2m/2 variations of a desired fraudulent message

· Two sets of messages are compared to find pair with same hash (probability > 0.5 by birthday paradox)

· Have user sign the valid message, then substitute the forgery which will have a valid signature

· Conclusion is that need to use larger mac/hash

Block ciphers as hash functions

· Can use block ciphers as hash functions

· Using h0=0 and zero-pad of final block

· Compute: hi = emi [hi-1]

· And use final block as the hash value

· Similar to cbc but without a key

· Resulting hash is too small (64-bit)

· Both due to direct birthday attack

· And to “meet-in-the-middle” attack

· Other variants also susceptible to attack

Hash functions & MAC security

· Like block ciphers have:

· Brute-force attacks exploiting

· Strong collision resistance hash have cost 2m/2

· Have proposal for h/w md5 cracker

· 128-bit hash looks vulnerable, 160-bits better

· Macs with known message-mac pairs

· Can either attack keyspace (cf key search) or mac

· At least 128-bit mac is needed for security

· Cryptanalytic attacks exploit structure

· Like block ciphers want brute-force attacks to be the best alternative

· Have a number of analytic attacks on iterated hash functions

· Cvi = f[cvi-1, mi]; h(m)=cvn

· Typically focus on collisions in function f

· Like block ciphers is often composed of rounds

· Attacks exploit properties of round functions

Hash and mac algorithms

· Hash functions

· Condense arbitrary size message to fixed size

· By processing message in blocks

· Through some compression function

· Either custom or block cipher based

· Message authentication code (mac)

· Fixed sized authenticator for some message

· To provide authentication for message

· By using block cipher mode or hash function

Hash algorithm structure

[image: image23.png]

4. Illustrate Secure Hash algorithm in detail and classify its performance.

SECURE HASH ALGORITHM

· Sha originally designed by nist & nsa in 1993

· Was revised in 1995 as sha-1

· Us standard for use with dsa signature scheme

· Standard is fips 180-1 1995, also internet rfc3174

· Nb. The algorithm is sha, the standard is shs

· Based on design of md4 with key differences

· Produces 160-bit hash values

· Recent 2005 results on security of sha-1 have raised concerns on its use in future applications

Revised secure hash standard

· Nist issued revision fips 180-2 in 2002

· Adds 3 additional versions of sha

· Sha-256, sha-384, sha-512

· Designed for compatibility with increased security provided by the aes cipher

· Structure & detail is similar to sha-1

· Hence analysis should be similar

· But security levels are rather higher

Sha-512 overview

[image: image24.png]

Sha-512 compression function

· Heart of the algorithm

· Processing message in 1024-bit blocks

· Consists of 80 rounds

· Updating a 512-bit buffer

· Using a 64-bit value wt derived from the current message block

· And a round constant based on cube root of first 80 prime numbers

Sha-512 round function

[image: image25.png]

[image: image26.png]

KEYED HASH FUNCTIONS AS MACS

· Want a mac based on a hash function

· Because hash functions are generally faster

· Code for crypto hash functions widely available

· Hash includes a key along with message

· Original proposal:

 keyedhash = hash(key|message)

· Some weaknesses were found with this

· Eventually led to development of hmac

HMAC

· Specified as internet standard rfc2104

· Uses hash function on the message:

Hmack = hash[(k+ xor opad) ||

hash[(k+ xor ipad)||m)]]

· Where k+ is the key padded out to size

· And opad, ipad are specified padding constants

· Overhead is just 3 more hash calculations than the message needs alone

· Any hash function can be used

· Eg. Md5, sha-1, ripemd-160, whirlpool

HMAC SECURITY

· Proved security of hmac relates to that of the underlying hash algorithm

· Attacking hmac requires either:

· Brute force attack on key used

· Birthday attack (but since keyed would need to observe a very large number of messages)

· Choose hash function used based on speed verses security constraints

CMAC

· Previously saw the daa (cbc-mac)

· Widely used in govt & industry

· But has message size limitation

· Can overcome using 2 keys & padding

· Thus forming the cipher-based message authentication code (cmac)

· Adopted by nist sp800-38b

CMAC OVERVIEW

[image: image27.png]

RIPEMD-160

· Ripemd-160 was developed in europe as part of ripe project in 96

· By researchers involved in attacks on md4/5

· Initial proposal strengthen following analysis to become ripemd-160

· Somewhat similar to md5/sha

· Uses 2 parallel lines of 5 rounds of 16 steps

· Creates a 160-bit hash value

· Slower, but probably more secure, than sha

RIPEMD-160 OVERVIEW

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 5-word (160-bit) buffer (a,b,c,d,e) to

(67452301,efcdab89,98badcfe,10325476,c3d2e1f0)

1. Process message in 16-word (512-bit) chunks:

· Use 10 rounds of 16 bit operations on message block & buffer – in 2 parallel lines of 5

· Add output to input to form new buffer value

2. Output hash value is the final buffer value

RIPEMD-160 ROUND

[image: image28.png]

RIPEMD-160 COMPRESSION FUNCTION

[image: image29.png]

RIPEMD-160 design criteria

· Use 2 parallel lines of 5 rounds for increased complexity

· For simplicity the 2 lines are very similar

· Step operation very close to md5

· Permutation varies parts of message used

· Circular shifts designed for best results

RIPEMD-160 verses md5 & sha-1

· Brute force attack harder (160 like sha-1 vs 128 bits for md5)

· Not vulnerable to known attacks, like sha-1 though stronger (compared to md4/5)

· Slower than md5 (more steps)

· All designed as simple and compact

· Sha-1 optimised for big endian cpu's vs ripemd-160 & md5 optimised for little endian cpu’s

5. Describe Digital Signature standard and authentication protocols.

Digital signatures

· Have looked at message authentication

· But does not address issues of lack of trust

· Digital signatures provide the ability to:

· Verify author, date & time of signature

· Authenticate message contents

· Be verified by third parties to resolve disputes

· Hence include authentication function with additional capabilities

Digital signature properties

· Must depend on the message signed

· Must use information unique to sender

· To prevent both forgery and denial

· Must be relatively easy to produce

· Must be relatively easy to recognize & verify

· Be computationally infeasible to forge

· With new message for existing digital signature

· With fraudulent digital signature for given message

· Be practical save digital signature in storage

Direct digital signatures

· Involve only sender & receiver

· Assumed receiver has sender’s public-key

· Digital signature made by sender signing entire message or hash with private-key

· Can encrypt using receivers public-key

· Important that sign first then encrypt message & signature

· Security depends on sender’s private-key

Arbitrated digital signatures

· Involves use of arbiter a

· Validates any signed message

· Then dated and sent to recipient

· Requires suitable level of trust in arbiter

· Can be implemented with either private or public-key algorithms

· Arbiter may or may not see message

AUTHENTICATION PROTOCOLS

· Used to convince parties of each others identity and to exchange session keys

· May be one-way or mutual

· Key issues are

· Confidentiality – to protect session keys

· Timeliness – to prevent replay attacks

· Published protocols are often found to have flaws and need to be modified

Replay attacks

· Where a valid signed message is copied and later resent

· Simple replay

· Repetition that can be logged

· Repetition that cannot be detected

· Backward replay without modification

· Countermeasures include

· Use of sequence numbers (generally impractical)

· Timestamps (needs synchronized clocks)

· Challenge/response (using unique nonce)

Using symmetric encryption

· As discussed previously can use a two-level hierarchy of keys

· Usually with a trusted key distribution center (kdc)

· Each party shares own master key with kdc

· Kdc generates session keys used for connections between parties

· Master keys used to distribute these to them

Using public-key encryption

· Have a range of approaches based on the use of public-key encryption

· Need to ensure have correct public keys for other parties

· Using a central authentication server (as)

· Various protocols exist using timestamps or nonces

One-way authentication

· Required when sender & receiver are not in communications at same time (eg. Email)

· Have header in clear so can be delivered by email system

· May want contents of body protected & sender authenticated

Using symmetric encryption

· Can refine use of kdc but can’t have final exchange of nonces, vis:

1. A->kdc: ida || idb || n1

2. Kdc -> a: eka[ks || idb || n1 || ekb[ks||ida]]

3. A -> b: ekb[ks||ida] || eks[m]

· does not protect against replays

· Could rely on timestamp in message, though email delays make this problematic

Public-key approaches

· Have seen some public-key approaches

· If confidentiality is major concern, can use:

A->b: epub[ks] || eks[m]

· Has encrypted session key, encrypted message

· If authentication needed use a digital signature with a digital certificate:

A->b: m || epra[h(m)] || epras[t||ida||pua]

· With message, signature, certificate

6. Briefly Explain about Digital signature algorithm

· Us govt approved signature scheme

· Designed by nist & nsa in early 90's

· Published as fips-186 in 1991

· Revised in 1993, 1996 & then 2000

· Uses the sha hash algorithm

· Dss is the standard, dsa is the algorithm

· Fips 186-2 (2000) includes alternative rsa & elliptic curve signature variants

Digital signature algorithm (DSA)

· Creates a 320 bit signature

· With 512-1024 bit security

· Smaller and faster than rsa

· A digital signature scheme only

· Security depends on difficulty of computing discrete logarithms

· Variant of elgamal & schnorr schemes

[image: image30.png]

DSA key generation

· Have shared global public key values (p,q,g):

· Choose q, a 160 bit

· Choose a large prime p = 2l

· Where l= 512 to 1024 bits and is a multiple of 64

· And q is a prime factor of (p-1)

· Choose g = h(p-1)/q

· Where h<p-1, h(p-1)/q (mod p) > 1

· Users choose private & compute public key:

· Choose x<q

· Compute y = gx (mod p)

DSA Signature creation

· To sign a message m the sender:

· Generates a random signature key k, k<q

· Nb. K must be random, be destroyed after use, and never be reused

· Then computes signature pair:

R = (gk(mod p))(mod q)

S = (k-1.h(m)+ x.r)(mod q)

· Sends signature (r,s) with message m

DSA signature verification

· Having received m & signature (r,s)

· To verify a signature, recipient computes:

W = s-1(mod q)

U1= (h(m).w)(mod q)

U2= (r.w)(mod q)

V = (gu1.yu2(mod p)) (mod q)

· If v=r then signature is verified

· See book web site for details of proof why

UNIT IV

SECURITY PRACTICE & SYSTEM SECURITY

1. Elaborately explain Kerberos authentication mechanism with suitable diagrams.

KERBEROS

· Trusted key server system from mit

· Provides centralised private-key third-party authentication in a distributed network

· Allows users access to services distributed through network

· Without needing to trust all workstations

· Rather all trust a central authentication server

· Two versions in use: 4 & 5

Kerberos requirements

· Its first report identified requirements as:

· Secure

· Reliable

· Transparent

· Scalable

· Implemented using an authentication protocol based on needham-schroeder

Simple authentication

· C->as : idc || pc || idv

· As->c : ticket

· C->v : idc||ticket

· Ticket=e(kv, [idc || adc|| idv])

· What adc plays here?

A more secure authentication

· Problem to be addressed

· 1. Repeated password requirement

· 2. Capture passwords, ie plain msg pwd.

· To solve this kerberos introduced tgs concept.

Kerberos v4

· A basic third-party authentication scheme

· Have an authentication server (as)

· Users initially negotiate with as to identify self

· As provides a non-corruptible authentication credential (ticket granting ticket tgt)

· Have a ticket granting server (tgs)

· Users subsequently request access to other services from tgs on basis of users tgt

Kerberos v4 dialogue

1. Obtain ticket granting ticket from as

· Once per session

2. Obtain service granting ticket from tgt

· For each distinct service required

3. Client/server exchange to obtain service

· On every service request

Dialogues

· C->as: idc || idtgs

· As->c: e(kc,ticket tgs)

· C->tgs: idc||idv||ticket tgs

· Tgs->c: ticket v

· C->v: idc||ticket v

· Ticket tgs =e(ktgs,[idc||adc||idtgs||ts1||lt1])

· Ticket v = e(kv,[idc||adc||idv||ts2||lt2])

Kerberos realms

· A kerberos environment consists of:

· A kerberos server

· A number of clients, all registered with server

· Application servers, sharing keys with server

· This is termed a realm

· Typically a single administrative domain

· If have multiple realms, their kerberos servers must share keys and trust

[image: image31.png]

Kerberos version 5

· Developed in mid 1990’s

· Specified as internet standard rfc 1510

· Provides improvements over v4

· Addresses environmental shortcomings

· Encryption alg, network protocol, byte order, ticket lifetime, authentication forwarding, interrealm auth

· And technical deficiencies

· Double encryption, non-std mode of use, session keys, password attacks

Environmental shortcomings

Encryption Algorithm:

 1. Can use any algorithm.

 2. V4 uses DES algorithm.

· Internet protocol dependence:

 v4 uses IP address, ISO network address was not adopted. V5 uses any network address type.

 Message byte ordering:

 Msg byte ordering done by the sender, v5 uses ans.1 and ber ie no ambiguous byte ordering.

Ticket life time:

 lt can be expressed in 8bit quantity of five minutes. Ie max 21 hrs can be expressed.

 v5 uses arbitrary lt.

Authentication fwd:

 No credential fwds to others, v5 supports.

Inter-realm authentication:

 Handled in v5 better than v4.

Comparing the dlg of k4 & k5

· Msg->1 :

· 1. Realm: indicates the realm of the user

 2. Options: used to request certain flags be set in the returned ticket.

 3. Times: used by the client to request the following times in the tickets.

 From: start time of validation of ticket

 Till: time period.

 Rtime: renew till time.

 4. Nonce: to stop replay attack.

· Msg 5/ 6:

 1. Subkey: to protect this application session by using a specific key. If omitted then kc,v is assumed as session key.

 2. Sequence number: optional field to specify the sequence number.

Some ticket flags

· Renewable

· Long lived tickets are risky (may be stolen and the opponent use until the expiration time)

· Short lived ones cause protocol overheads

· For tgt, the user should enter password for each ticket

· Solution: ticket originally has short lifetime, but can be periodically (and automatically) renewed

· Until renew-till time specified in the ticket

· Unless tgs or as refuses to renew it (if stolen)

· Proxiable / proxy

· If a tgt is proxiable, then tgs may issue proxy tickets that the ticket owner (say alice) may give some other servers that may act on behalf of alice

· Forwardable / forwarded

· More powerful than proxy

· Proxy flag can be set only in server tickets

· Forwarded flag can be set also in tgts

· If a tgt bears a forwardable flag set, than tgs may issue forwarded tgts for a nearby realm

· Nearby realm’s tgs may either forward or issue a server ticket.

· In this way, realms can be connected

2. Give a brief notes on X.509 Authentication Service

· Part of ccitt x.500 directory service standards

· Distributed servers maintaining user info database

· Defines framework for authentication services

· Directory may store public-key certificates

· With public key of user signed by certification authority

· Also defines authentication protocols

· Uses public-key crypto & digital signatures

· Algorithms not standardised, but rsa recommended

· X.509 certificates are widely used

X.509 certificates

· Issued by a certification authority (ca), containing:

· Version (1, 2, or 3)

· Serial number (unique within ca) identifying certificate

· Signature algorithm identifier

· Issuer x.500 name (ca)

· Period of validity (from - to dates)

· Subject x.500 name (name of owner)

· Subject public-key info (algorithm, parameters, key)

· Issuer unique identifier (v2+)

· Subject unique identifier (v2+)

· Extension fields (v3)

· Signature (of hash of all fields in certificate)

· Notation ca<<a>> denotes certificate for a signed by ca

[image: image32.png]

Obtaining a certificate

· Any user with access to ca can get any certificate from it

· Only the ca can modify a certificate

· Because cannot be forged, certificates can be placed in a public directory

CA hierarchy

· If both users share a common ca then they are assumed to know its public key

· Otherwise ca's must form a hierarchy

· Use certificates linking members of hierarchy to validate other ca's

· Each ca has certificates for clients (forward) and parent (backward)

· Each client trusts parents certificates

· Enable verification of any certificate from one ca by users of all other cas in hierarchy

CA hierarchy use

[image: image33.png]

Certificate revocation

· Certificates have a period of validity

· May need to revoke before expiry, eg:

1. User's private key is compromised

2. User is no longer certified by this ca

3. Ca's certificate is compromised

· Ca’s maintain list of revoked certificates

1. The certificate revocation list (crl)

· Users should check certificates with ca’s crl

Authentication procedures

· X.509 includes three alternative authentication procedures:

· One-way authentication

· Two-way authentication

· Three-way authentication

· All use public-key signatures

One-way authentication

· 1 message (a->b) used to establish

· The identity of a and that message is from a

· Message was intended for b

· Integrity & originality of message

· Message must include timestamp, nonce, b's identity and is signed by a

· May include additional info for b

· Eg session key

Two-way authentication

· 2 messages (a->b, b->a) which also establishes in addition:

· The identity of b and that reply is from b

· That reply is intended for a

· Integrity & originality of reply

· Reply includes original nonce from a, also timestamp and nonce from b

· May include additional info for a

Three-way authentication

· 3 messages (a->b, b->a, a->b) which enables above authentication without synchronized clocks

· Has reply from a back to b containing signed copy of nonce from b

· Means that timestamps need not be checked or relied upon

X.509 VERSION 3

· Has been recognised that additional information is needed in a certificate

· Email/url, policy details, usage constraints

· Rather than explicitly naming new fields defined a general extension method

· Extensions consist of:

· Extension identifier

· Criticality indicator

· Extension value

Certificate extensions

· Key and policy information

· Convey info about subject & issuer keys, plus indicators of certificate policy

· Certificate subject and issuer attributes

· Support alternative names, in alternative formats for certificate subject and/or issuer

· Certificate path constraints

· Allow constraints on use of certificates by other ca’s

Public key infrastructure

[image: image34.png]

ELECTRONIC MAIL SECURITY

· Email is one of the most widely used and regarded network services

· Currently message contents are not secure

· May be inspected either in transit

· Or by suitably privileged users on destination system

Email security enhancements

· Confidentiality

· Protection from disclosure

· Authentication

· Of sender of message

· Message integrity

· Protection from modification

· Non-repudiation of origin

· Protection from denial by sender

3. Explain Pretty Good Privacy in detail

PRETTY GOOD PRIVACY (PGP)

· Widely used de facto secure email

· Developed by phil zimmermann

· Selected best available crypto algs to use

· Integrated into a single program

· On unix, pc, macintosh and other systems

· Originally free, now also have commercial versions available

PGP operation – authentication

1. Sender creates message

2. Use sha-1 to generate 160-bit hash of message

3. Signed hash with rsa using sender's private key, and is attached to message

4. Receiver uses rsa with sender's public key to decrypt and recover hash code

5. Receiver verifies received message using hash of it and compares with decrypted hash code

PGP operation – confidentiality

1. Sender generates message and 128-bit random number as session key for it

2. Encrypt message using cast-128 / idea / 3des in cbc mode with session key

3. Session key encrypted using rsa with recipient's public key, & attached to msg

4. Receiver uses rsa with private key to decrypt and recover session key

5. Session key is used to decrypt message

PGP operation – confidentiality & authentication

· Can use both services on same message

· Create signature & attach to message

· Encrypt both message & signature

· Attach rsa/elgamal encrypted session key

PGP operation – compression

· By default pgp compresses message after signing but before encrypting

· So can store uncompressed message & signature for later verification

· & because compression is non deterministic

· Uses zip compression algorithm

PGP operation – email compatibility

· When using pgp will have binary data to send (encrypted message etc)

· However email was designed only for text

· Hence pgp must encode raw binary data into printable ascii characters

· Uses radix-64 algorithm

· Maps 3 bytes to 4 printable chars

· Also appends a crc

· Pgp also segments messages if too big

PGP session keys

· Need a session key for each message

· Of varying sizes: 56-bit des, 128-bit cast or idea, 168-bit triple-des

· Generated using ansi x12.17 mode

· Uses random inputs taken from previous uses and from keystroke timing of user

PGP public & private keys

· Since many public/private keys may be in use, need to identify which is actually used to encrypt session key in a message

· Could send full public-key with every message

· But this is inefficient

· Rather use a key identifier based on key

· Is least significant 64-bits of the key

· Will very likely be unique

· Also use key id in signatures

PGP message format

[image: image35.png]

PGP key rings

· Each pgp user has a pair of keyrings:

· Public-key ring contains all the public-keys of other pgp users known to this user, indexed by key id

· Private-key ring contains the public/private key pair(s) for this user, indexed by key id & encrypted keyed from a hashed passphrase

· Security of private keys thus depends on the pass-phrase security

PGP message generation

[image: image36.png]

PGP message reception

[image: image37.png]

PGP key management

· Rather than relying on certificate authorities

· In pgp every user is own ca

· Can sign keys for users they know directly

· Forms a “web of trust”

· Trust keys have signed

· Can trust keys others have signed if have a chain of signatures to them

· Key ring includes trust indicators

· Users can also revoke their keys

4. Describe Secure Multi Purpose Internet Mail Extentions.

S/MIME (SECURE/MULTIPURPOSE INTERNET MAIL EXTENSIONS)

· Security enhancement to mime email

· Original internet rfc822 email was text only

· Mime provided support for varying content types and multi-part messages

· With encoding of binary data to textual form

· S/mime added security enhancements

· Have s/mime support in many mail agents

· Eg ms outlook, mozilla, mac mail etc

S/MIME functions

· Enveloped data

· Encrypted content and associated keys

· Signed data

· Encoded message + signed digest

· Clear-signed data

· Cleartext message + encoded signed digest

· Signed & enveloped data

· Nesting of signed & encrypted entities

S/MIME cryptographic algorithms

· Digital signatures: dss & rsa

· Hash functions: sha-1 & md5

· Session key encryption: elgamal & rsa

· Message encryption: aes, triple-des, rc2/40 and others

· Mac: hmac with sha-1

· Have process to decide which algs to use

S/MIME messages

· S/mime secures a mime entity with a signature, encryption, or both

· Forming a mime wrapped pkcs object

· Have a range of content-types:

· Enveloped data

· Signed data

· Clear-signed data

· Registration request

· Certificate only message

S/MIME certificate processing

· S/mime uses x.509 v3 certificates

· Managed using a hybrid of a strict x.509 ca hierarchy & pgp’s web of trust

· Each client has a list of trusted ca’s certs

· And own public/private key pairs & certs

· Certificates must be signed by trusted ca’s

Certificate authorities

· Have several well-known ca’s

· Verisign one of most widely used

· Verisign issues several types of digital ids

· Increasing levels of checks & hence trust

Class
identity checks
usage

1
name/email check
web browsing/email

2
enroll/addr check
email, subs, s/w validate

3
id documents
 e-banking/service access

IP SECURITY

· Have a range of application specific security mechanisms

· Eg. S/mime, pgp, kerberos, ssl/https

· However there are security concerns that cut across protocol layers

· Would like security implemented by the network for all applications

· General ip security mechanisms

· Provides

· Authentication

· Confidentiality

· Key management

· Applicable to use over lans, across public & private wans, & for the internet

IPSEC uses

[image: image38.png]

Benefits of IPSEC

· In a firewall/router provides strong security to all traffic crossing the perimeter

· In a firewall/router is resistant to bypass

· Is below transport layer, hence transparent to applications

· Can be transparent to end users

· Can provide security for individual users

· Secures routing architecture

IP security architecture

· Specification is quite complex

· Defined in numerous rfc’s

· Incl. Rfc 2401/2402/2406/2408

· Many others, grouped by category

· Mandatory in ipv6, optional in ipv4

· Have two security header extensions:

· Authentication header (ah)

· Encapsulating security payload (esp)

IPSEC services

· Access control

· Connectionless integrity

· Data origin authentication

· Rejection of replayed packets

· A form of partial sequence integrity

· Confidentiality (encryption)

· Limited traffic flow confidentiality

Security associations

· A one-way relationship between sender & receiver that affords security for traffic flow

· Defined by 3 parameters:

· Security parameters index (spi)

· Ip destination address

· Security protocol identifier

· Has a number of other parameters

· Seq no, ah & eh info, lifetime etc

· Have a database of security associations

Authentication header (AH)

· Provides support for data integrity & authentication of ip packets

· End system/router can authenticate user/app

· Prevents address spoofing attacks by tracking sequence numbers

· Based on use of a mac

· Hmac-md5-96 or hmac-sha-1-96

· Parties must share a secret key

Authentication header

[image: image39.png]

Encapsulating security payload (ESP)

· Provides message content confidentiality & limited traffic flow confidentiality

· Can optionally provide the same authentication services as ah

· Supports range of ciphers, modes, padding

· Incl. Des, triple-des, rc5, idea, cast etc

· Cbc & other modes

· Padding needed to fill blocksize, fields, for traffic flow

Encapsulating security payload

[image: image40.png]

Transport vs tunnel mode ESP

· Transport mode is used to encrypt & optionally authenticate ip data

· Data protected but header left in clear

· Can do traffic analysis but is efficient

· Good for esp host to host traffic

· Tunnel mode encrypts entire ip packet

· Add new header for next hop

· Good for vpns, gateway to gateway security

Combining security associations

· Sa’s can implement either ah or esp

· To implement both need to combine sa’s

· Form a security association bundle

· May terminate at different or same endpoints

· Combined by

· Transport adjacency

· Iterated tunneling

· Issue of authentication & encryption order

Oakley

· A key exchange protocol

· Based on diffie-hellman key exchange

· Adds features to address weaknesses

· Cookies, groups (global params), nonces, dh key exchange with authentication

· Can use arithmetic in prime fields or elliptic curve fields

ISAKMP

· Internet security association and key management protocol

· Provides framework for key management

· Defines procedures and packet formats to establish, negotiate, modify, & delete sas

· Independent of key exchange protocol, encryption alg, & authentication method

[image: image41.png]

ISAKMP payloads & exchanges

· Have a number of isakmp payload types:

· Security, proposal, transform, key, identification, certificate, certificate, hash, signature, nonce, notification, delete

· isakmp has framework for 5 types of message exchanges:

· Base, identity protection, authentication only, aggressive, informational

4.8WEB SECURITY

· Web now widely used by business, government, individuals

· But internet & web are vulnerable

· Have a variety of threats

· Integrity

· Confidentiality

· Denial of service

· Authentication

· Need added security mechanisms

SSL (SECURE SOCKET LAYER)

· Transport layer security service

· Originally developed by netscape

· Version 3 designed with public input

· Subsequently became internet standard known as tls (transport layer security)

· Uses tcp to provide a reliable end-to-end service

· Ssl has two layers of protocols

SSL architecture

[image: image42.png]

· SSL Connection

· A transient, peer-to-peer, communications link

· Associated with 1 ssl session

· SSL session

· An association between client & server

· Created by the handshake protocol

· Define a set of cryptographic parameters

· May be shared by multiple ssl connections

SSL record protocol services

· Message integrity

· Using a mac with shared secret key

· Similar to hmac but with different padding

· Confidentiality

· Using symmetric encryption with a shared secret key defined by handshake protocol

· Aes, idea, rc2-40, des-40, des, 3des, fortezza, rc4-40, rc4-128

· Message is compressed before encryption

SSL record protocol operation

[image: image43.png]

SSL alert protocol

· Conveys ssl-related alerts to peer entity

· Severity

· Warning or fatal

· Specific alert

· Fatal: unexpected message, bad record mac, decompression failure, handshake failure, illegal parameter

· Warning: close notify, no certificate, bad certificate, unsupported certificate, certificate revoked, certificate expired, certificate unknown

· Compressed & encrypted like all ssl data

SSL handshake protocol

· Allows server & client to:

· Authenticate each other

· To negotiate encryption & mac algorithms

· To negotiate cryptographic keys to be used

· Comprises a series of messages in phases

· Establish security capabilities

· Server authentication and key exchange

· Client authentication and key exchange

· Finish

[image: image44.png]

TLS (transport layer security)

· Ietf standard rfc 2246 similar to sslv3

· With minor differences

· In record format version number

· Uses hmac for mac

· A pseudo-random function expands secrets

· Has additional alert codes

· Some changes in supported ciphers

· Changes in certificate types & negotiations

· Changes in crypto computations & padding

5. Briefly explain Secure Electronic Transactions.

· Open encryption & security specification

· To protect internet credit card transactions

· Developed in 1996 by mastercard, visa etc

· Not a payment system

· Rather a set of security protocols & formats

· Secure communications amongst parties

· Trust from use of x.509v3 certificates

· Privacy by restricted info to those who need it

SET components

[image: image45.png]

SET transaction

1. Customer opens account

2. Customer receives a certificate

3. Merchants have their own certificates

4. Customer places an order

5. Merchant is verified

6. Order and payment are sent

7. Merchant requests payment authorization

8. Merchant confirms order

9. Merchant provides goods or service

10. Merchant requests payment

Dual signature

· Customer creates dual messages

· Order information (oi) for merchant

· Payment information (pi) for bank

· Neither party needs details of other

· But must know they are linked

· Use a dual signature for this

· Signed concatenated hashes of oi & pi

Ds=e(prc, [h(h(pi)||h(oi))])

SET purchase request

· Set purchase request exchange consists of four messages

1. Initiate request - get certificates

2. Initiate response - signed response

3. Purchase request - of oi & pi

4. Purchase response - ack order

Purchase request – merchant

1. Verifies cardholder certificates using ca sigs

2. Verifies dual signature using customer's public signature key to ensure order has not been tampered with in transit & that it was signed using cardholder's private signature key

3. Processes order and forwards the payment information to the payment gateway for authorization (described later)

4. Sends a purchase response to cardholder

Payment gateway authorization

1. Verifies all certificates

2. Decrypts digital envelope of authorization block to obtain symmetric key & then decrypts authorization block

3. Verifies merchant's signature on authorization block

4. Decrypts digital envelope of payment block to obtain symmetric key & then decrypts payment block

5. Verifies dual signature on payment block

6. Verifies that transaction id received from merchant matches that in pi received (indirectly) from customer

7. Requests & receives an authorization from issuer

8. Sends authorization response back to merchant

Payment capture

· Merchant sends payment gateway a payment capture request

· Gateway checks request

· Then causes funds to be transferred to merchants account

· Notifies merchant using capture response

UNIT V

 E-MAIL, IP & WEB SECURITY

1. Write short notes on Intrusion Detections.

· Significant issue for networked systems is hostile or unwanted access

· Either via network or local

· Can identify classes of intruders:

· Masquerader

· Misfeasor

· Clandestine user

· Varying levels of competence

· Clearly a growing publicized problem

· From “wily hacker” in 1986/87

· To clearly escalating cert stats

· May seem benign, but still cost resources

· May use compromised system to launch other attacks

· Awareness of intruders has led to the development of certs

Intrusion techniques

· Aim to gain access and/or increase privileges on a system

· Basic attack methodology

· Target acquisition and information gathering

· Initial access

· Privilege escalation

· Covering tracks

· Key goal often is to acquire passwords

· So then exercise access rights of owner

Password guessing

· One of the most common attacks

· Attacker knows a login (from email/web page etc)

· Then attempts to guess password for it

· Defaults, short passwords, common word searches

· User info (variations on names, birthday, phone, common words/interests)

· Exhaustively searching all possible passwords

· Check by login or against stolen password file

· Success depends on password chosen by user

· Surveys show many users choose poorly

Password capture

· Another attack involves password capture

· Watching over shoulder as password is entered

· Using a trojan horse program to collect

· Monitoring an insecure network login

· Eg. Telnet, ftp, web, email

· Extracting recorded info after successful login (web history/cache, last number dialled etc)

· Using valid login/password can impersonate user

· Users need to be educated to use suitable precautions/countermeasures

Intrusion detection

· Inevitably will have security failures

· So need also to detect intrusions so can

· Block if detected quickly

· Act as deterrent

· Collect info to improve security

· Assume intruder will behave differently to a legitimate user

· But will have imperfect distinction between

Approaches to intrusion detection

· Statistical anomaly detection

· Threshold

· Profile based

· Rule-based detection

· Anomaly

· Penetration identification

Audit records

· Fundamental tool for intrusion detection

· Native audit records

· Part of all common multi-user o/s

· Already present for use

· May not have info wanted in desired form

· Detection-specific audit records

· Created specifically to collect wanted info

· At cost of additional overhead on system

Statistical anomaly detection

· Threshold detection

· Count occurrences of specific event over time

· If exceed reasonable value assume intrusion

· Alone is a crude & ineffective detector

· Profile based

· Characterize past behavior of users

· Detect significant deviations from this

· Profile usually multi-parameter

Audit record analysis

· Foundation of statistical approaches

· Analyze records to get metrics over time

· Counter, gauge, interval timer, resource use

· Use various tests on these to determine if current behavior is acceptable

· Mean & standard deviation, multivariate, markov process, time series, operational

· Key advantage is no prior knowledge used

Rule-based intrusion detection

· Observe events on system & apply rules to decide if activity is suspicious or not

· Rule-based anomaly detection

· Analyze historical audit records to identify usage patterns & auto-generate rules for them

· Then observe current behavior & match against rules to see if conforms

· Like statistical anomaly detection does not require prior knowledge of security flaws

· Rule-based penetration identification

· Uses expert systems technology

· With rules identifying known penetration, weakness patterns, or suspicious behavior

· Compare audit records or states against rules

· Rules usually machine & o/s specific

· Rules are generated by experts who interview & codify knowledge of security admins

· Quality depends on how well this is done

Base-rate fallacy

· Practically an intrusion detection system needs to detect a substantial percentage of intrusions with few false alarms

· If too few intrusions detected -> false security

· If too many false alarms -> ignore / waste time

· This is very hard to do

· Existing systems seem not to have a good record

Distributed intrusion detection

· Traditional focus is on single systems

· But typically have networked systems

· More effective defense has these working together to detect intrusions

· Issues

· Dealing with varying audit record formats

· Integrity & confidentiality of networked data

· Centralized or decentralized architecture

Distributed intrusion detection - architecture

[image: image46.png]

Distributed intrusion detection – agent implementation

[image: image47.png]

Honeypots

· Decoy systems to lure attackers

· Away from accessing critical systems

· To collect information of their activities

· To encourage attacker to stay on system so administrator can respond

· Are filled with fabricated information

· Instrumented to collect detailed information on attackers activities

· Single or multiple networked systems

· Cf ietf intrusion detection wg standards

2. Briefly explain about Password Management

· Front-line defense against intruders

· Users supply both:

· Login – determines privileges of that user

· Password – to identify them

· Passwords often stored encrypted

· Unix uses multiple des (variant with salt)

· More recent systems use crypto hash function

· Should protect password file on system

Password studies

· Purdue 1992 - many short passwords

· Klein 1990 - many guessable passwords

· Conclusion is that users choose poor passwords too often

· Need some approach to counter this

Managing passwords - education

· Can use policies and good user education

· Educate on importance of good passwords

· Give guidelines for good passwords

· Minimum length (>6)

· Require a mix of upper & lower case letters, numbers, punctuation

· Not dictionary words

· But likely to be ignored by many users

Managing passwords - computer generated

· Let computer create passwords

· If random likely not memorisable, so will be written down (sticky label syndrome)

· Even pronounceable not remembered

· Have history of poor user acceptance

· Fips pub 181 one of best generators

· Has both description & sample code

· Generates words from concatenating random pronounceable syllables

Managing passwords - reactive checking

· Reactively run password guessing tools

· Note that good dictionaries exist for almost any language/interest group

· Cracked passwords are disabled

· But is resource intensive

· Bad passwords are vulnerable till found

Managing passwords - proactive checking

· Most promising approach to improving password security

· Allow users to select own password

· But have system verify it is acceptable

· Simple rule enforcement (see earlier slide)

· Compare against dictionary of bad passwords

· Use algorithmic (markov model or bloom filter) to detect poor choices

3. Define virus. Explain in detail.

· Computer viruses have got a lot of publicity

· One of a family of malicious software

· Effects usually obvious

· Have figured in news reports, fiction, movies (often exaggerated)

· Getting more attention than deserve

· Are a concern though

Malicious software

[image: image48.png]

Backdoor or trapdoor

· Secret entry point into a program

· Allows those who know access bypassing usual security procedures

· Have been commonly used by developers

· A threat when left in production programs allowing exploited by attackers

· Very hard to block in o/s

· Requires good s/w development & update

Logic bomb

· One of oldest types of malicious software

· Code embedded in legitimate program

· Activated when specified conditions met

· Eg presence/absence of some file

· Particular date/time

· Particular user

· When triggered typically damage system

· Modify/delete files/disks, halt machine, etc

Trojan horse

· Program with hidden side-effects

· Which is usually superficially attractive

· Eg game, s/w upgrade etc

· When run performs some additional tasks

· Allows attacker to indirectly gain access they do not have directly

· Often used to propagate a virus/worm or install a backdoor

· Or simply to destroy data

Zombie

· Program which secretly takes over another networked computer

· Then uses it to indirectly launch attacks

· Often used to launch distributed denial of service (ddos) attacks

· Exploits known flaws in network systems

Viruses

· A piece of self-replicating code attached to some other code

· Cf biological virus

· Both propagates itself & carries a payload

· Carries code to make copies of itself

· As well as code to perform some covert task

Virus operation

· Virus phases:

· Dormant – waiting on trigger event

· Propagation – replicating to programs/disks

· Triggering – by event to execute payload

· Execution – of payload

· Details usually machine/os specific

· Exploiting features/weaknesses

Virus structure

Program v :=

{goto main;

1234567;

subroutine infect-executable :=
{loop:

file := get-random-executable-file;

if (first-line-of-file = 1234567) then goto loop

else prepend v to file; }

subroutine do-damage := {whatever damage is to be done}

subroutine trigger-pulled := {return true if condition holds}

main: main-program :=
{infect-executable;

if trigger-pulled then do-damage;

goto next;}

next:

}

4. Briefly explain the types of virus

· Can classify on basis of how they attack

· Parasitic virus

· Memory-resident virus

· Boot sector virus

· Stealth

· Polymorphic virus

· Metamorphic virus

Macro virus

· Macro code attached to some data file

· Interpreted by program using file

· Eg word/excel macros

· Esp. Using auto command & command macros

· Code is now platform independent

· Is a major source of new viral infections

· Blur distinction between data and program files

· Classic trade-off: "ease of use" vs "security”

· Have improving security in word etc

· Are no longer dominant virus threat

Email virus

· Spread using email with attachment containing a macro virus

· Cf melissa

· Triggered when user opens attachment

· Or worse even when mail viewed by using scripting features in mail agent

· Hence propagate very quickly

· Usually targeted at microsoft outlook mail agent & word/excel documents

· Need better o/s & application security

Worms

· Replicating but not infecting program

· Typically spreads over a network

· Cf morris internet worm in 1988

· Led to creation of certs

· Using users distributed privileges or by exploiting system vulnerabilities

· Widely used by hackers to create zombie pc's, subsequently used for further attacks, esp dos

· Major issue is lack of security of permanently connected systems, esp pc's

Worm operation

· Worm phases like those of viruses:

· Dormant

· Propagation

· Search for other systems to infect

· Establish connection to target remote system

· Replicate self onto remote system

· Triggering

· Execution

Morris worm

· Best known classic worm

· Released by robert morris in 1988

· Targeted unix systems

· Using several propagation techniques

· Simple password cracking of local pw file

· Exploit bug in finger daemon

· Exploit debug trapdoor in sendmail daemon

· If any attack succeeds then replicated self

Recent worm attacks

· New spate of attacks from mid-2001

· Code red - used ms iis bug

· Probes random ips for systems running iis

· Had trigger time for denial-of-service attack

· 2nd wave infected 360000 servers in 14 hours

· Code red 2 - installed backdoor

· Nimda - multiple infection mechanisms

· Sql slammer - attacked ms sql server

· Sobig.f - attacked open proxy servers

· Mydoom - mass email worm + backdoor

Worm techology

· Multiplatform

· Multiexploit

· Ultrafast spreading

· Polymorphic

· Metamorphic

· Transport vehicles

· Zero-day exploit

VIRUS COUNTERMEASURES

· Best countermeasure is prevention

· But in general not possible

· Hence need to do one or more of:

· Detection - of viruses in infected system

· Identification - of specific infecting virus

· Removeal - restoring system to clean state

Anti-virus software

· First-generation

· Scanner uses virus signature to identify virus

· Or change in length of programs

· Second-generation

· Uses heuristic rules to spot viral infection

· Or uses crypto hash of program to spot changes

· Third-generation

· Memory-resident programs identify virus by actions

· Fourth-generation

· Packages with a variety of antivirus techniques

· Eg scanning & activity traps, access-controls

· Arms race continues

Advanced anti-virus techniques

· Generic decryption

· Use cpu simulator to check program signature & behavior before actually running it

· Digital immune system (ibm)

· General purpose emulation & virus detection

· Any virus entering org is captured, analyzed, detection/shielding created for it, removed

Digital immune system

[image: image49.png]

Behavior-blocking software

· Integrated with host o/s

· Monitors program behavior in real-time

· Eg file access, disk format, executable mods, system settings changes, network access

· For possibly malicious actions

· If detected can block, terminate, or seek ok

· Has advantage over scanners

· But malicious code runs before detection

Distributed denial of service attacks (DDOS)

· Distributed denial of service (ddos) attacks form a significant security threat

· Making networked systems unavailable

· By flooding with useless traffic

· Using large numbers of “zombies”

· Growing sophistication of attacks

· Defense technologies struggling to cope

Contructing the ddos attack network

· Must infect large number of zombies

· Needs:

1. Software to implement the ddos attack

2. An unpatched vulnerability on many systems

3. Scanning strategy to find vulnerable systems

· Random, hit-list, topological, local subnet

DDOS countermeasures

· Three broad lines of defense:

1. Attack prevention & preemption (before)

2. Attack detection & filtering (during)

3. Attack source traceback & ident (after)

· Huge range of attack possibilities

· Hence evolving countermeasures

5. Explain the technical details of firewall and describe any three types of firewall with neat diagram .

Introduction

· Seen evolution of information systems

· Now everyone want to be on the internet

· And to interconnect networks

· Has persistent security concerns

· Can’t easily secure every system in org

· Typically use a firewall

· To provide perimeter defence

· As part of comprehensive security strategy

What is a firewall?

· A choke point of control and monitoring

· Interconnects networks with differing trust

· Imposes restrictions on network services

· Only authorized traffic is allowed

· Auditing and controlling access

· Can implement alarms for abnormal behavior

· Provide nat & usage monitoring

· Implement vpns using ipsec

· Must be immune to penetration

Firewall limitations

· Cannot protect from attacks bypassing it

· Eg sneaker net, utility modems, trusted organisations, trusted services (eg ssl/ssh)

· Cannot protect against internal threats

· Eg disgruntled or colluding employees

· Cannot protect against transfer of all virus infected programs or files

· Because of huge range of o/s & file types

Firewalls – packet filters

· Simplest, fastest firewall component

· Foundation of any firewall system

· Examine each ip packet (no context) and permit or deny according to rules

· Hence restrict access to services (ports)

· Possible default policies

· That not expressly permitted is prohibited

· That not expressly prohibited is permitted

[image: image50.png]

Attacks on packet filters

· Ip address spoofing

· Fake source address to be trusted

· Add filters on router to block

· Source routing attacks

· Attacker sets a route other than default

· Block source routed packets

· Tiny fragment attacks

· Split header info over several tiny packets

· Either discard or reassemble before check

Firewalls – stateful packet filters

· Traditional packet filters do not examine higher layer context

· Ie matching return packets with outgoing flow

· Stateful packet filters address this need

· They examine each ip packet in context

· Keep track of client-server sessions

· Check each packet validly belongs to one

· Hence are better able to detect bogus packets out of context

Firewalls - application level gateway (or proxy)

· Have application specific gateway / proxy

· Has full access to protocol

· User requests service from proxy

· Proxy validates request as legal

· Then actions request and returns result to user

· Can log / audit traffic at application level

· Need separate proxies for each service

· Some services naturally support proxying

· Others are more problematic

[image: image51.png]

Firewalls - circuit level gateway

· Relays two tcp connections

· Imposes security by limiting which such connections are allowed

· Once created usually relays traffic without examining contents

· Typically used when trust internal users by allowing general outbound connections

· Socks is commonly used

Firewalls - circuit level gateway

[image: image52.png]

Bastion host

· Highly secure host system

· Runs circuit / application level gateways

· Or provides externally accessible services

· Potentially exposed to "hostile" elements

· Hence is secured to withstand this

· Hardened o/s, essential services, extra auth

· Proxies small, secure, independent, non-privileged

· May support 2 or more net connections

· May be trusted to enforce policy of trusted separation between these net connections

Firewall configurations

[image: image53.png]

Firewall configurations

[image: image54.png]

[image: image55.png]

Access control

· Given system has identified a user

· Determine what resources they can access

· General model is that of access matrix with

· Subject - active entity (user, process)

· Object - passive entity (file or resource)

· Access right – way object can be accessed

· Can decompose by

· Columns as access control lists

· Rows as capability tickets

Access control matrix

[image: image56.png]

TRUSTED COMPUTER SYSTEMS

· Information security is increasingly important

· Have varying degrees of sensitivity of information

· Cf military info classifications: confidential, secret etc

· Subjects (people or programs) have varying rights of access to objects (information)

· Known as multilevel security

· Subjects have maximum & current security level

· Objects have a fixed security level classification

· Want to consider ways of increasing confidence in systems to enforce these rights

Bell lapadula (blp) model

· One of the most famous security models

· Implemented as mandatory policies on system

· Has two key policies:

· No read up (simple security property)

· A subject can only read/write an object if the current security level of the subject dominates (>=) the classification of the object

· No write down (*-property)

· A subject can only append/write to an object if the current security level of the subject is dominated by (<=) the classification of the object

Reference monitor

[image: image57.png]

Evaluated computer systems

· Governments can evaluate it systems

· Against a range of standards:

· Tcsec, ipsec and now common criteria

· Define a number of “levels” of evaluation with increasingly stringent checking

· Have published lists of evaluated products

· Though aimed at government/defense use

· Can be useful in industry also

Common criteria

· International initiative specifying security requirements & defining evaluation criteria

· Incorporates earlier standards

· Eg csec, itsec, ctcpec (canadian), federal (us)

· Specifies standards for

· Evaluation criteria

· Methodology for application of criteria

· Administrative procedures for evaluation, certification and accreditation schemes

· Defines set of security requirements

· Have a target of evaluation (toe)

· Requirements fall in two categories

· Functional

· Assurance

· Both organised in classes of families & components

Common criteria requirements

· Functional requirements

· Security audit, crypto support, communications, user data protection, identification & authentication, security management, privacy, protection of trusted security functions, resource utilization, toe access, trusted path

· Assurance requirements

· Configuration management, delivery & operation, development, guidance documents, life cycle support, tests, vulnerability assessment, assurance maintenance

[image: image58.png]

Common criteria

[image: image59.png]

